Source Code Cross Referenced for IntegerDiagonalMatrix.java in  » Science » JSci » JSci » maths » matrices » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » JSci » JSci.maths.matrices 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /* AUTO-GENERATED */
002:        package JSci.maths.matrices;
003:
004:        import JSci.maths.ExtraMath;
005:        import JSci.maths.Mapping;
006:        import JSci.maths.DimensionException;
007:        import JSci.maths.MaximumIterationsExceededException;
008:        import JSci.maths.vectors.AbstractIntegerVector;
009:        import JSci.maths.vectors.IntegerVector;
010:        import JSci.maths.groups.AbelianGroup;
011:        import JSci.maths.algebras.*;
012:        import JSci.maths.fields.*;
013:
014:        /**
015:         * The IntegerDiagonalMatrix class provides an object for encapsulating integer diagonal matrices.
016:         * @version 2.2
017:         * @author Mark Hale
018:         */
019:        public class IntegerDiagonalMatrix extends AbstractIntegerSquareMatrix
020:                implements  DiagonalMatrix {
021:            /**
022:             * Diagonal data.
023:             */
024:            protected final int diag[];
025:
026:            /**
027:             * Constructs an empty matrix.
028:             * @param size the number of rows/columns
029:             */
030:            public IntegerDiagonalMatrix(final int size) {
031:                this (new int[size]);
032:            }
033:
034:            /**
035:             * Constructs a matrix from an array.
036:             * Any non-diagonal elements in the array are ignored.
037:             * @param array an assigned value
038:             * @exception MatrixDimensionException If the array is not square.
039:             */
040:            public IntegerDiagonalMatrix(final int array[][]) {
041:                this (array.length);
042:                for (int i = 0; i < array.length; i++) {
043:                    if (array[i].length != array.length)
044:                        throw new MatrixDimensionException(
045:                                "Array is not square.");
046:                    diag[i] = array[i][i];
047:                }
048:            }
049:
050:            /**
051:             * Constructs a matrix by wrapping an array containing the diagonal elements.
052:             * @param array an assigned value
053:             */
054:            public IntegerDiagonalMatrix(final int array[]) {
055:                super (array.length);
056:                diag = array;
057:            }
058:
059:            /**
060:             * Creates an identity matrix.
061:             * @param size the number of rows/columns
062:             */
063:            public static IntegerDiagonalMatrix identity(final int size) {
064:                int array[] = new int[size];
065:                for (int i = 0; i < size; i++)
066:                    array[i] = 1;
067:                return new IntegerDiagonalMatrix(array);
068:            }
069:
070:            /**
071:             * Compares two ${nativeTyp} matrices for equality.
072:             * @param m a int matrix
073:             */
074:            public boolean equals(AbstractIntegerMatrix m, double tol) {
075:                if (m instanceof  DiagonalMatrix) {
076:                    if (numRows != m.rows() || numCols != m.columns())
077:                        return false;
078:                    int sumSqr = 0;
079:                    int delta = diag[0] - m.getElement(0, 0);
080:                    sumSqr += delta * delta;
081:                    for (int i = 1; i < numRows; i++) {
082:                        delta = diag[i] - m.getElement(i, i);
083:                        sumSqr += delta * delta;
084:                    }
085:                    return (sumSqr <= tol * tol);
086:                } else {
087:                    return false;
088:                }
089:            }
090:
091:            /**
092:             * Returns a string representing this matrix.
093:             */
094:            public String toString() {
095:                final StringBuffer buf = new StringBuffer(5 * numRows * numCols);
096:                for (int i = 0; i < numRows; i++) {
097:                    for (int j = 0; j < numCols; j++) {
098:                        buf.append(getElement(i, j));
099:                        buf.append(' ');
100:                    }
101:                    buf.append('\n');
102:                }
103:                return buf.toString();
104:            }
105:
106:            /**
107:             * Converts this matrix to a double matrix.
108:             * @return a double matrix
109:             */
110:            public AbstractDoubleMatrix toDoubleMatrix() {
111:                final double array[] = new double[numRows];
112:                for (int i = 0; i < numRows; i++)
113:                    array[i] = diag[i];
114:                return new DoubleDiagonalMatrix(array);
115:            }
116:
117:            /**
118:             * Converts this matrix to a complex matrix.
119:             * @return a complex matrix
120:             */
121:            public AbstractComplexMatrix toComplexMatrix() {
122:                final double array[] = new double[numRows];
123:                for (int i = 0; i < numRows; i++)
124:                    array[i] = diag[i];
125:                return new ComplexDiagonalMatrix(array, new double[numRows]);
126:            }
127:
128:            /**
129:             * Returns an element of the matrix.
130:             * @param i row index of the element
131:             * @param j column index of the element
132:             * @exception MatrixDimensionException If attempting to access an invalid element.
133:             */
134:            public int getElement(int i, int j) {
135:                if (i >= 0 && i < numRows && j >= 0 && j < numCols) {
136:                    if (i == j)
137:                        return diag[i];
138:                    else
139:                        return 0;
140:                } else
141:                    throw new MatrixDimensionException(getInvalidElementMsg(i,
142:                            j));
143:            }
144:
145:            /**
146:             * Sets the value of an element of the matrix.
147:             * Should only be used to initialise this matrix.
148:             * @param i row index of the element
149:             * @param j column index of the element
150:             * @param x a number
151:             * @exception MatrixDimensionException If attempting to access an invalid element.
152:             */
153:            public void setElement(int i, int j, final int x) {
154:                if (i >= 0 && i < numRows && j >= 0 && j < numCols) {
155:                    if (i == j)
156:                        diag[i] = x;
157:                    else
158:                        throw new MatrixDimensionException(
159:                                getInvalidElementMsg(i, j));
160:                } else
161:                    throw new MatrixDimensionException(getInvalidElementMsg(i,
162:                            j));
163:            }
164:
165:            /**
166:             * Returns true if this matrix is symmetric.
167:             */
168:            public boolean isSymmetric() {
169:                return true;
170:            }
171:
172:            /**
173:             * Returns the determinant.
174:             */
175:            public int det() {
176:                int det = diag[0];
177:                for (int i = 1; i < numRows; i++)
178:                    det *= diag[i];
179:                return det;
180:            }
181:
182:            /**
183:             * Returns the trace.
184:             */
185:            public int trace() {
186:                int tr = diag[0];
187:                for (int i = 1; i < numRows; i++)
188:                    tr += diag[i];
189:                return tr;
190:            }
191:
192:            /**
193:             * Returns the l<sup><img border=0 alt="infinity" src="doc-files/infinity.gif"></sup>-norm.
194:             * @author Taber Smith
195:             */
196:            public int infNorm() {
197:                int result = Math.abs(diag[0]);
198:                int tmpResult;
199:                for (int i = 1; i < numRows; i++) {
200:                    tmpResult = Math.abs(diag[i]);
201:                    if (tmpResult > result)
202:                        result = tmpResult;
203:                }
204:                return result;
205:            }
206:
207:            /**
208:             * Returns the Frobenius (l<sup>2</sup>) norm.
209:             * @author Taber Smith
210:             */
211:            public double frobeniusNorm() {
212:                double result = diag[0];
213:                for (int i = 1; i < numRows; i++)
214:                    result = ExtraMath.hypot(result, diag[i]);
215:                return result;
216:            }
217:
218:            /**
219:             * Returns the operator norm.
220:             * @exception MaximumIterationsExceededException If it takes more than 50 iterations to determine an eigenvalue.
221:             */
222:            public double operatorNorm()
223:                    throws MaximumIterationsExceededException {
224:                return infNorm();
225:            }
226:
227:            //============
228:            // OPERATIONS
229:            //============
230:
231:            // ADDITION
232:
233:            /**
234:             * Returns the addition of this matrix and another.
235:             * @param m a int matrix
236:             * @exception MatrixDimensionException If the matrices are different sizes.
237:             */
238:            public AbstractIntegerSquareMatrix add(
239:                    final AbstractIntegerSquareMatrix m) {
240:                if (m instanceof  IntegerDiagonalMatrix)
241:                    return add((IntegerDiagonalMatrix) m);
242:                if (m instanceof  DiagonalMatrix)
243:                    return addDiagonal(m);
244:                if (m instanceof  IntegerTridiagonalMatrix)
245:                    return add((IntegerTridiagonalMatrix) m);
246:                if (m instanceof  TridiagonalMatrix)
247:                    return addTridiagonal(m);
248:                if (m instanceof  IntegerSquareMatrix)
249:                    return add((IntegerSquareMatrix) m);
250:
251:                if (numRows == m.rows() && numCols == m.columns()) {
252:                    final int array[][] = new int[numRows][numCols];
253:                    for (int i = 0; i < numRows; i++) {
254:                        array[i][0] = m.getElement(i, 0);
255:                        for (int j = 1; j < numCols; j++)
256:                            array[i][j] = m.getElement(i, j);
257:                    }
258:                    for (int i = 0; i < numRows; i++)
259:                        array[i][i] += diag[i];
260:                    return new IntegerSquareMatrix(array);
261:                } else {
262:                    throw new MatrixDimensionException(
263:                            "Matrices are different sizes.");
264:                }
265:            }
266:
267:            public IntegerSquareMatrix add(final IntegerSquareMatrix m) {
268:                if (numRows == m.numRows && numCols == m.numCols) {
269:                    final int array[][] = new int[numRows][numCols];
270:                    for (int i = 0; i < numRows; i++)
271:                        System.arraycopy(m.matrix[i], 0, array[i], 0, numRows);
272:                    for (int i = 0; i < numRows; i++)
273:                        array[i][i] += diag[i];
274:                    return new IntegerSquareMatrix(array);
275:                } else
276:                    throw new MatrixDimensionException(
277:                            "Matrices are different sizes.");
278:            }
279:
280:            /**
281:             * Returns the addition of this matrix and another.
282:             * @param m a int tridiagonal matrix
283:             * @exception MatrixDimensionException If the matrices are different sizes.
284:             */
285:            public IntegerTridiagonalMatrix add(final IntegerTridiagonalMatrix m) {
286:                if (numRows == m.numRows) {
287:                    final IntegerTridiagonalMatrix ans = new IntegerTridiagonalMatrix(
288:                            numRows);
289:                    System.arraycopy(m.ldiag, 0, ans.ldiag, 0, m.ldiag.length);
290:                    System.arraycopy(m.udiag, 0, ans.udiag, 0, m.udiag.length);
291:                    ans.diag[0] = diag[0] + m.diag[0];
292:                    for (int i = 1; i < numRows; i++)
293:                        ans.diag[i] = diag[i] + m.diag[i];
294:                    return ans;
295:                } else
296:                    throw new MatrixDimensionException(
297:                            "Matrices are different sizes.");
298:            }
299:
300:            private IntegerTridiagonalMatrix addTridiagonal(
301:                    final AbstractIntegerSquareMatrix m) {
302:                int mRow = numRows;
303:                if (mRow == m.rows()) {
304:                    final IntegerTridiagonalMatrix ans = new IntegerTridiagonalMatrix(
305:                            mRow);
306:                    ans.diag[0] = diag[0] + m.getElement(0, 0);
307:                    ans.udiag[0] = m.getElement(0, 1);
308:                    mRow--;
309:                    for (int i = 1; i < mRow; i++) {
310:                        ans.ldiag[i] = m.getElement(i, i - 1);
311:                        ans.diag[i] = diag[i] + m.getElement(i, i);
312:                        ans.udiag[i] = m.getElement(i, i + 1);
313:                    }
314:                    ans.ldiag[mRow] = m.getElement(mRow, mRow - 1);
315:                    ans.diag[mRow] = diag[mRow] + m.getElement(mRow, mRow);
316:                    return ans;
317:                } else {
318:                    throw new MatrixDimensionException(
319:                            "Matrices are different sizes.");
320:                }
321:            }
322:
323:            /**
324:             * Returns the addition of this matrix and another.
325:             * @param m a int diagonal matrix
326:             * @exception MatrixDimensionException If the matrices are different sizes.
327:             */
328:            public IntegerDiagonalMatrix add(final IntegerDiagonalMatrix m) {
329:                if (numRows == m.numRows) {
330:                    final int array[] = new int[numRows];
331:                    array[0] = diag[0] + m.diag[0];
332:                    for (int i = 1; i < numRows; i++)
333:                        array[i] = diag[i] + m.diag[i];
334:                    return new IntegerDiagonalMatrix(array);
335:                } else
336:                    throw new MatrixDimensionException(
337:                            "Matrices are different sizes.");
338:            }
339:
340:            private IntegerDiagonalMatrix addDiagonal(
341:                    final AbstractIntegerSquareMatrix m) {
342:                if (numRows == m.numRows) {
343:                    final int array[] = new int[numRows];
344:                    array[0] = diag[0] + m.getElement(0, 0);
345:                    for (int i = 1; i < numRows; i++)
346:                        array[i] = diag[i] + m.getElement(i, i);
347:                    return new IntegerDiagonalMatrix(array);
348:                } else
349:                    throw new MatrixDimensionException(
350:                            "Matrices are different sizes.");
351:            }
352:
353:            // SUBTRACTION
354:
355:            /**
356:             * Returns the subtraction of this matrix by another.
357:             * @param m a int matrix
358:             * @exception MatrixDimensionException If the matrices are different sizes.
359:             */
360:            public AbstractIntegerSquareMatrix subtract(
361:                    final AbstractIntegerSquareMatrix m) {
362:                if (m instanceof  IntegerDiagonalMatrix)
363:                    return subtract((IntegerDiagonalMatrix) m);
364:                if (m instanceof  DiagonalMatrix)
365:                    return subtractDiagonal(m);
366:                if (m instanceof  IntegerTridiagonalMatrix)
367:                    return subtract((IntegerTridiagonalMatrix) m);
368:                if (m instanceof  TridiagonalMatrix)
369:                    return subtractTridiagonal(m);
370:                if (m instanceof  IntegerSquareMatrix)
371:                    return subtract((IntegerSquareMatrix) m);
372:
373:                if (numRows == m.rows() && numCols == m.columns()) {
374:                    final int array[][] = new int[numRows][numCols];
375:                    for (int i = 0; i < numRows; i++) {
376:                        array[i][0] = -m.getElement(i, 0);
377:                        for (int j = 1; j < numCols; j++)
378:                            array[i][j] = -m.getElement(i, j);
379:                    }
380:                    for (int i = 0; i < numRows; i++)
381:                        array[i][i] += diag[i];
382:                    return new IntegerSquareMatrix(array);
383:                } else {
384:                    throw new MatrixDimensionException(
385:                            "Matrices are different sizes.");
386:                }
387:            }
388:
389:            public IntegerSquareMatrix subtract(final IntegerSquareMatrix m) {
390:                if (numRows == m.numRows && numCols == m.numCols) {
391:                    final int array[][] = new int[numRows][numCols];
392:                    for (int i = 0; i < numRows; i++) {
393:                        array[i][0] = -m.matrix[i][0];
394:                        for (int j = 1; j < numCols; j++)
395:                            array[i][j] = -m.matrix[i][j];
396:                    }
397:                    for (int i = 0; i < numRows; i++)
398:                        array[i][i] += diag[i];
399:                    return new IntegerSquareMatrix(array);
400:                } else
401:                    throw new MatrixDimensionException(
402:                            "Matrices are different sizes.");
403:            }
404:
405:            /**
406:             * Returns the subtraction of this matrix and another.
407:             * @param m a int tridiagonal matrix
408:             * @exception MatrixDimensionException If the matrices are different sizes.
409:             */
410:            public IntegerTridiagonalMatrix subtract(
411:                    final IntegerTridiagonalMatrix m) {
412:                int mRow = numRows;
413:                if (mRow == m.numRows) {
414:                    final IntegerTridiagonalMatrix ans = new IntegerTridiagonalMatrix(
415:                            mRow);
416:                    ans.diag[0] = diag[0] - m.diag[0];
417:                    ans.udiag[0] = -m.udiag[0];
418:                    mRow--;
419:                    for (int i = 1; i < mRow; i++) {
420:                        ans.ldiag[i] = -m.ldiag[i];
421:                        ans.diag[i] = diag[i] - m.diag[i];
422:                        ans.udiag[i] = -m.udiag[i];
423:                    }
424:                    ans.ldiag[mRow] = -m.ldiag[mRow];
425:                    ans.diag[mRow] = diag[mRow] - m.diag[mRow];
426:                    return ans;
427:                } else
428:                    throw new MatrixDimensionException(
429:                            "Matrices are different sizes.");
430:            }
431:
432:            private IntegerTridiagonalMatrix subtractTridiagonal(
433:                    final AbstractIntegerSquareMatrix m) {
434:                int mRow = numRows;
435:                if (mRow == m.rows()) {
436:                    final IntegerTridiagonalMatrix ans = new IntegerTridiagonalMatrix(
437:                            mRow);
438:                    ans.diag[0] = diag[0] - m.getElement(0, 0);
439:                    ans.udiag[0] = -m.getElement(0, 1);
440:                    mRow--;
441:                    for (int i = 1; i < mRow; i++) {
442:                        ans.ldiag[i] = -m.getElement(i, i - 1);
443:                        ans.diag[i] = diag[i] - m.getElement(i, i);
444:                        ans.udiag[i] = -m.getElement(i, i + 1);
445:                    }
446:                    ans.ldiag[mRow] = -m.getElement(mRow, mRow - 1);
447:                    ans.diag[mRow] = diag[mRow] - m.getElement(mRow, mRow);
448:                    return ans;
449:                } else {
450:                    throw new MatrixDimensionException(
451:                            "Matrices are different sizes.");
452:                }
453:            }
454:
455:            /**
456:             * Returns the subtraction of this matrix and another.
457:             * @param m a int diagonal matrix
458:             * @exception MatrixDimensionException If the matrices are different sizes.
459:             */
460:            public IntegerDiagonalMatrix subtract(final IntegerDiagonalMatrix m) {
461:                if (numRows == m.numRows) {
462:                    final int array[] = new int[numRows];
463:                    array[0] = diag[0] - m.diag[0];
464:                    for (int i = 1; i < numRows; i++)
465:                        array[i] = diag[i] - m.diag[i];
466:                    return new IntegerDiagonalMatrix(array);
467:                } else
468:                    throw new MatrixDimensionException(
469:                            "Matrices are different sizes.");
470:            }
471:
472:            private IntegerDiagonalMatrix subtractDiagonal(
473:                    final AbstractIntegerSquareMatrix m) {
474:                if (numRows == m.numRows) {
475:                    final int array[] = new int[numRows];
476:                    array[0] = diag[0] - m.getElement(0, 0);
477:                    for (int i = 1; i < numRows; i++)
478:                        array[i] = diag[i] - m.getElement(i, i);
479:                    return new IntegerDiagonalMatrix(array);
480:                } else
481:                    throw new MatrixDimensionException(
482:                            "Matrices are different sizes.");
483:            }
484:
485:            // SCALAR MULTIPLICATION
486:
487:            /**
488:             * Returns the multiplication of this matrix by a scalar.
489:             * @param x a int.
490:             * @return a int diagonal matrix.
491:             */
492:            public AbstractIntegerMatrix scalarMultiply(final int x) {
493:                final int array[] = new int[numRows];
494:                array[0] = x * diag[0];
495:                for (int i = 1; i < numRows; i++)
496:                    array[i] = x * diag[i];
497:                return new IntegerDiagonalMatrix(array);
498:            }
499:
500:            // SCALAR DIVISON
501:
502:            // SCALAR PRODUCT
503:
504:            /**
505:             * Returns the scalar product of this matrix and another.
506:             * @param m a int matrix.
507:             * @exception MatrixDimensionException If the matrices are different sizes.
508:             */
509:            public int scalarProduct(final AbstractIntegerSquareMatrix m) {
510:                if (m instanceof  IntegerDiagonalMatrix)
511:                    return scalarProduct((IntegerDiagonalMatrix) m);
512:                if (m instanceof  IntegerTridiagonalMatrix)
513:                    return scalarProduct((IntegerTridiagonalMatrix) m);
514:                if (m instanceof  IntegerSquareMatrix)
515:                    return scalarProduct((IntegerSquareMatrix) m);
516:
517:                if (numRows == m.rows() && numCols == m.columns()) {
518:                    int ans = diag[0] * m.getElement(0, 0);
519:                    for (int i = 1; i < numRows; i++)
520:                        ans += diag[i] * m.getElement(i, i);
521:                    return ans;
522:                } else {
523:                    throw new MatrixDimensionException(
524:                            "Matrices are different sizes.");
525:                }
526:            }
527:
528:            public int scalarProduct(final IntegerSquareMatrix m) {
529:                if (numRows == m.numRows && numCols == m.numCols) {
530:                    int ans = diag[0] * m.matrix[0][0];
531:                    for (int i = 1; i < numRows; i++)
532:                        ans += diag[i] * m.matrix[i][i];
533:                    return ans;
534:                } else
535:                    throw new MatrixDimensionException(
536:                            "Matrices are different sizes.");
537:            }
538:
539:            public int scalarProduct(final IntegerTridiagonalMatrix m) {
540:                if (numRows == m.numRows) {
541:                    int ans = diag[0] * m.diag[0];
542:                    for (int i = 1; i < numRows; i++)
543:                        ans += diag[i] * m.diag[i];
544:                    return ans;
545:                } else
546:                    throw new MatrixDimensionException(
547:                            "Matrices are different sizes.");
548:            }
549:
550:            public int scalarProduct(final IntegerDiagonalMatrix m) {
551:                if (numRows == m.numRows) {
552:                    int ans = diag[0] * m.diag[0];
553:                    for (int i = 1; i < numRows; i++)
554:                        ans += diag[i] * m.diag[i];
555:                    return ans;
556:                } else
557:                    throw new MatrixDimensionException(
558:                            "Matrices are different sizes.");
559:            }
560:
561:            // MATRIX MULTIPLICATION
562:
563:            /**
564:             * Returns the multiplication of a vector by this matrix.
565:             * @param v a int vector.
566:             * @exception DimensionException If the matrix and vector are incompatible.
567:             */
568:            public AbstractIntegerVector multiply(final AbstractIntegerVector v) {
569:                if (numCols == v.dimension()) {
570:                    final int array[] = new int[numRows];
571:                    array[0] = diag[0] * v.getComponent(0);
572:                    for (int i = 1; i < numRows; i++)
573:                        array[i] = diag[i] * v.getComponent(i);
574:                    return new IntegerVector(array);
575:                } else {
576:                    throw new DimensionException(
577:                            "Matrix and vector are incompatible.");
578:                }
579:            }
580:
581:            /**
582:             * Returns the multiplication of this matrix and another.
583:             * @param m a int matrix
584:             * @return a AbstractIntegerMatrix or a AbstractIntegerSquareMatrix as appropriate
585:             * @exception MatrixDimensionException If the matrices are incompatible.
586:             */
587:            public AbstractIntegerSquareMatrix multiply(
588:                    final AbstractIntegerSquareMatrix m) {
589:                if (m instanceof  IntegerDiagonalMatrix)
590:                    return multiply((IntegerDiagonalMatrix) m);
591:                if (m instanceof  DiagonalMatrix)
592:                    return multiplyDiagonal(m);
593:                if (m instanceof  IntegerTridiagonalMatrix)
594:                    return multiply((IntegerTridiagonalMatrix) m);
595:                if (m instanceof  TridiagonalMatrix)
596:                    return multiplyTridiagonal(m);
597:                if (m instanceof  IntegerSquareMatrix)
598:                    return multiply((IntegerSquareMatrix) m);
599:
600:                if (numCols == m.rows()) {
601:                    final int mColumns = m.columns();
602:                    final int array[][] = new int[numRows][mColumns];
603:                    for (int i = 0; i < numRows; i++) {
604:                        array[i][0] = diag[0] * m.getElement(i, 0);
605:                        for (int j = 1; j < mColumns; j++)
606:                            array[i][j] = diag[i] * m.getElement(i, j);
607:                    }
608:                    return new IntegerSquareMatrix(array);
609:                } else {
610:                    throw new MatrixDimensionException("Incompatible matrices.");
611:                }
612:            }
613:
614:            public IntegerSquareMatrix multiply(final IntegerSquareMatrix m) {
615:                if (numCols == m.numRows) {
616:                    final int array[][] = new int[numRows][m.numCols];
617:                    for (int i = 0; i < numRows; i++) {
618:                        array[i][0] = diag[0] * m.matrix[i][0];
619:                        for (int j = 1; j < m.numCols; j++)
620:                            array[i][j] = diag[i] * m.matrix[i][j];
621:                    }
622:                    return new IntegerSquareMatrix(array);
623:                } else
624:                    throw new MatrixDimensionException("Incompatible matrices.");
625:            }
626:
627:            public IntegerTridiagonalMatrix multiply(
628:                    final IntegerTridiagonalMatrix m) {
629:                int mRow = numRows;
630:                if (numCols == m.numRows) {
631:                    final IntegerTridiagonalMatrix ans = new IntegerTridiagonalMatrix(
632:                            mRow);
633:                    ans.diag[0] = diag[0] * m.diag[0];
634:                    ans.udiag[0] = diag[0] * m.udiag[0];
635:                    mRow--;
636:                    for (int i = 1; i < mRow; i++) {
637:                        ans.ldiag[i] = diag[i] * m.ldiag[i];
638:                        ans.diag[i] = diag[i] * m.diag[i];
639:                        ans.udiag[i] = diag[i] * m.udiag[i];
640:                    }
641:                    ans.ldiag[mRow] = diag[mRow] * m.ldiag[mRow];
642:                    ans.diag[mRow] = diag[mRow] * m.diag[mRow];
643:                    return ans;
644:                } else
645:                    throw new MatrixDimensionException("Incompatible matrices.");
646:            }
647:
648:            private IntegerTridiagonalMatrix multiplyTridiagonal(
649:                    final AbstractIntegerSquareMatrix m) {
650:                int mRow = numRows;
651:                if (numCols == m.rows()) {
652:                    final IntegerTridiagonalMatrix ans = new IntegerTridiagonalMatrix(
653:                            mRow);
654:                    ans.diag[0] = diag[0] * m.getElement(0, 0);
655:                    ans.udiag[0] = diag[0] * m.getElement(0, 1);
656:                    mRow--;
657:                    for (int i = 1; i < mRow; i++) {
658:                        ans.ldiag[i] = diag[i] * m.getElement(i, i - 1);
659:                        ans.diag[i] = diag[i] * m.getElement(i, i);
660:                        ans.udiag[i] = diag[i] * m.getElement(i, i + 1);
661:                    }
662:                    ans.ldiag[mRow] = diag[mRow] * m.getElement(mRow, mRow - 1);
663:                    ans.diag[mRow] = diag[mRow] * m.getElement(mRow, mRow);
664:                    return ans;
665:                } else {
666:                    throw new MatrixDimensionException("Incompatible matrices.");
667:                }
668:            }
669:
670:            public IntegerDiagonalMatrix multiply(final IntegerDiagonalMatrix m) {
671:                if (numCols == m.numRows) {
672:                    final int array[] = new int[numRows];
673:                    array[0] = diag[0] * m.diag[0];
674:                    for (int i = 1; i < numRows; i++) {
675:                        array[i] = diag[i] * m.diag[i];
676:                    }
677:                    return new IntegerDiagonalMatrix(array);
678:                } else
679:                    throw new MatrixDimensionException("Incompatible matrices.");
680:            }
681:
682:            private IntegerDiagonalMatrix multiplyDiagonal(
683:                    final AbstractIntegerSquareMatrix m) {
684:                if (numCols == m.rows()) {
685:                    final int array[] = new int[numRows];
686:                    array[0] = diag[0] * m.getElement(0, 0);
687:                    for (int i = 1; i < numRows; i++) {
688:                        array[i] = diag[i] * m.getElement(i, i);
689:                    }
690:                    return new IntegerDiagonalMatrix(array);
691:                } else {
692:                    throw new MatrixDimensionException("Incompatible matrices.");
693:                }
694:            }
695:
696:            // TRANSPOSE
697:
698:            /**
699:             * Returns the transpose of this matrix.
700:             * @return a int matrix
701:             */
702:            public Matrix transpose() {
703:                return this ;
704:            }
705:
706:            // INVERSE
707:
708:            /**
709:             * Returns the inverse of this matrix.
710:             * @return a double diagonal matrix
711:             */
712:            public AbstractDoubleSquareMatrix inverse() {
713:                final double array[] = new double[numRows];
714:                array[0] = 1.0 / diag[0];
715:                for (int i = 1; i < numRows; i++)
716:                    array[i] = 1.0 / diag[i];
717:                return new DoubleDiagonalMatrix(array);
718:            }
719:
720:            // LU DECOMPOSITION
721:
722:            /**
723:             * Returns the LU decomposition of this matrix.
724:             * @param pivot an empty array of length <code>rows()+1</code>
725:             * to hold the pivot information (null if not interested).
726:             * The last array element will contain the parity.
727:             * @return an array with [0] containing the L-matrix
728:             * and [1] containing the U-matrix.
729:             */
730:            public AbstractDoubleSquareMatrix[] luDecompose(int pivot[]) {
731:                if (LU != null) {
732:                    if (pivot != null)
733:                        System.arraycopy(LUpivot, 0, pivot, 0, pivot.length);
734:                    return LU;
735:                }
736:                if (pivot == null)
737:                    pivot = new int[numRows + 1];
738:                for (int i = 0; i < numRows; i++)
739:                    pivot[i] = i;
740:                pivot[numRows] = 1;
741:                LU = new AbstractDoubleSquareMatrix[2];
742:                LU[0] = DoubleDiagonalMatrix.identity(numRows);
743:                LU[1] = (AbstractDoubleSquareMatrix) this .toDoubleMatrix();
744:                LUpivot = new int[pivot.length];
745:                System.arraycopy(pivot, 0, LUpivot, 0, pivot.length);
746:                return LU;
747:            }
748:
749:            /**
750:             * Returns the LU decomposition of this matrix.
751:             * @return an array with [0] containing the L-matrix
752:             * and [1] containing the U-matrix.
753:             * @jsci.planetmath LUDecomposition
754:             */
755:            public AbstractDoubleSquareMatrix[] luDecompose() {
756:                return luDecompose(null);
757:            }
758:
759:            // CHOLESKY DECOMPOSITION
760:
761:            /**
762:             * Returns the Cholesky decomposition of this matrix.
763:             * Matrix must be symmetric and positive definite.
764:             * @return an array with [0] containing the L-matrix and [1] containing the U-matrix.
765:             */
766:            public AbstractDoubleSquareMatrix[] choleskyDecompose() {
767:                final AbstractDoubleSquareMatrix lu[] = new AbstractDoubleSquareMatrix[2];
768:                final double array[] = new double[numRows];
769:                array[0] = Math.sqrt(diag[0]);
770:                for (int i = 1; i < numRows; i++)
771:                    array[i] = Math.sqrt(diag[i]);
772:                lu[0] = new DoubleDiagonalMatrix(array);
773:                lu[1] = lu[0];
774:                return lu;
775:            }
776:
777:            // QR DECOMPOSITION
778:
779:            /**
780:             * Returns the QR decomposition of this matrix.
781:             * @return an array with [0] containing the Q-matrix and [1] containing the R-matrix.
782:             * @jsci.planetmath QRDecomposition
783:             */
784:            public AbstractDoubleSquareMatrix[] qrDecompose() {
785:                final AbstractDoubleSquareMatrix qr[] = new AbstractDoubleSquareMatrix[2];
786:                qr[0] = DoubleDiagonalMatrix.identity(numRows);
787:                qr[1] = (AbstractDoubleSquareMatrix) this .toDoubleMatrix();
788:                return qr;
789:            }
790:
791:            // SINGULAR VALUE DECOMPOSITION
792:
793:            /**
794:             * Returns the singular value decomposition of this matrix.
795:             * @return an array with [0] containing the U-matrix, [1] containing the S-matrix and [2] containing the V-matrix.
796:             */
797:            public AbstractDoubleSquareMatrix[] singularValueDecompose() {
798:                final int N = numRows;
799:                final int Nm1 = N - 1;
800:                final double arrayU[] = new double[N];
801:                final double arrayS[] = new double[N];
802:                final double arrayV[] = new double[N];
803:                for (int i = 0; i < Nm1; i++) {
804:                    arrayU[i] = -1.0;
805:                    arrayS[i] = Math.abs(diag[i]);
806:                    arrayV[i] = diag[i] < 0.0 ? 1.0 : -1.0;
807:                }
808:                arrayU[Nm1] = 1.0;
809:                arrayS[Nm1] = Math.abs(diag[Nm1]);
810:                arrayV[Nm1] = diag[Nm1] < 0.0 ? -1.0 : 1.0;
811:                final AbstractDoubleSquareMatrix svd[] = new AbstractDoubleSquareMatrix[3];
812:                svd[0] = new DoubleDiagonalMatrix(arrayU);
813:                svd[1] = new DoubleDiagonalMatrix(arrayS);
814:                svd[2] = new DoubleDiagonalMatrix(arrayV);
815:                return svd;
816:            }
817:
818:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.