Source Code Cross Referenced for AbstractIntegerSquareMatrix.java in  » Science » JSci » JSci » maths » matrices » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » JSci » JSci.maths.matrices 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /* AUTO-GENERATED */
002:        package JSci.maths.matrices;
003:
004:        import JSci.GlobalSettings;
005:        import JSci.maths.ArrayMath;
006:        import JSci.maths.ExtraMath;
007:        import JSci.maths.LinearMath;
008:        import JSci.maths.MaximumIterationsExceededException;
009:        import JSci.maths.Mapping;
010:        import JSci.maths.vectors.AbstractIntegerVector;
011:        import JSci.maths.groups.AbelianGroup;
012:        import JSci.maths.algebras.*;
013:        import JSci.maths.fields.*;
014:
015:        /**
016:         * The AbstractIntegerSquareMatrix class provides an object for encapsulating integer square matrices.
017:         * @version 2.2
018:         * @author Mark Hale
019:         */
020:        public abstract class AbstractIntegerSquareMatrix extends
021:                AbstractIntegerMatrix implements  SquareMatrix {
022:            protected transient AbstractDoubleSquareMatrix[] LU;
023:            protected transient int[] LUpivot;
024:
025:            /**
026:             * Constructs a matrix.
027:             */
028:            protected AbstractIntegerSquareMatrix(final int size) {
029:                super (size, size);
030:            }
031:
032:            /**
033:             * Converts this matrix to a double matrix.
034:             * @return a double square matrix
035:             */
036:            public AbstractDoubleMatrix toDoubleMatrix() {
037:                final double ans[][] = new double[numRows][numCols];
038:                for (int i = 0; i < numRows; i++) {
039:                    for (int j = 0; j < numCols; j++)
040:                        ans[i][j] = getElement(i, j);
041:                }
042:                return new DoubleSquareMatrix(ans);
043:            }
044:
045:            /**
046:             * Converts this matrix to a complex matrix.
047:             * @return a complex square matrix
048:             */
049:            public AbstractComplexMatrix toComplexMatrix() {
050:                ComplexSquareMatrix cm = new ComplexSquareMatrix(numRows);
051:                for (int i = 0; i < numRows; i++) {
052:                    for (int j = 0; j < numCols; j++)
053:                        cm.setElement(i, j, getElement(i, j), 0.0);
054:                }
055:                return cm;
056:            }
057:
058:            /**
059:             * Returns true if this matrix is symmetric.
060:             */
061:            public boolean isSymmetric() {
062:                return this .equals(this .transpose());
063:            }
064:
065:            /**
066:             * Returns true if this matrix is unitary.
067:             */
068:            public boolean isUnitary() {
069:                return this .multiply(this .transpose()).equals(
070:                        DoubleDiagonalMatrix.identity(numRows));
071:            }
072:
073:            /**
074:             * Returns the determinant.
075:             */
076:            public int det() {
077:                if (numRows == 2) {
078:                    return getElement(0, 0) * getElement(1, 1)
079:                            - getElement(0, 1) * getElement(1, 0);
080:                } else {
081:                    final AbstractDoubleSquareMatrix lu[] = this 
082:                            .luDecompose(null);
083:                    double det = lu[1].getElement(0, 0);
084:                    for (int i = 1; i < numRows; i++)
085:                        det *= lu[1].getElement(i, i);
086:                    return Math.round((float) det) * LUpivot[numRows];
087:                }
088:            }
089:
090:            /**
091:             * Returns the trace.
092:             */
093:            public int trace() {
094:                int result = getElement(0, 0);
095:                for (int i = 1; i < numRows; i++)
096:                    result += getElement(i, i);
097:                return result;
098:            }
099:
100:            //============
101:            // OPERATIONS
102:            //============
103:
104:            /**
105:             * Returns the negative of this matrix.
106:             */
107:            public AbelianGroup.Member negate() {
108:                final int array[][] = new int[numRows][numCols];
109:                for (int i = 0; i < numRows; i++) {
110:                    array[i][0] = -getElement(i, 0);
111:                    for (int j = 1; j < numCols; j++)
112:                        array[i][j] = -getElement(i, j);
113:                }
114:                return new IntegerSquareMatrix(array);
115:            }
116:
117:            // ADDITION
118:
119:            /**
120:             * Returns the addition of this matrix and another.
121:             * @param m a int square matrix
122:             * @exception MatrixDimensionException If the matrices are not square or different sizes.
123:             */
124:            public final AbstractIntegerMatrix add(final AbstractIntegerMatrix m) {
125:                if (m instanceof  AbstractIntegerSquareMatrix)
126:                    return add((AbstractIntegerSquareMatrix) m);
127:                else if (numRows == m.rows() && numCols == m.columns())
128:                    return add(new SquareMatrixAdaptor(m));
129:                else
130:                    throw new MatrixDimensionException(
131:                            "Matrices are different sizes.");
132:            }
133:
134:            /**
135:             * Returns the addition of this matrix and another.
136:             * @param m a int square matrix
137:             * @exception MatrixDimensionException If the matrices are different sizes.
138:             */
139:            public AbstractIntegerSquareMatrix add(
140:                    final AbstractIntegerSquareMatrix m) {
141:                if (numRows == m.rows() && numCols == m.columns()) {
142:                    final int array[][] = new int[numRows][numCols];
143:                    for (int i = 0; i < numRows; i++) {
144:                        array[i][0] = getElement(i, 0) + m.getElement(i, 0);
145:                        for (int j = 1; j < numCols; j++)
146:                            array[i][j] = getElement(i, j) + m.getElement(i, j);
147:                    }
148:                    return new IntegerSquareMatrix(array);
149:                } else {
150:                    throw new MatrixDimensionException(
151:                            "Matrices are different sizes.");
152:                }
153:            }
154:
155:            // SUBTRACTION
156:
157:            /**
158:             * Returns the subtraction of this matrix and another.
159:             * @param m a int square matrix
160:             * @exception MatrixDimensionException If the matrices are not square or different sizes.
161:             */
162:            public final AbstractIntegerMatrix subtract(
163:                    final AbstractIntegerMatrix m) {
164:                if (m instanceof  AbstractIntegerSquareMatrix)
165:                    return subtract((AbstractIntegerSquareMatrix) m);
166:                else if (numRows == m.rows() && numCols == m.columns())
167:                    return subtract(new SquareMatrixAdaptor(m));
168:                else
169:                    throw new MatrixDimensionException(
170:                            "Matrices are different sizes.");
171:            }
172:
173:            /**
174:             * Returns the subtraction of this matrix by another.
175:             * @param m a int square matrix
176:             * @exception MatrixDimensionException If the matrices are different sizes.
177:             */
178:            public AbstractIntegerSquareMatrix subtract(
179:                    final AbstractIntegerSquareMatrix m) {
180:                if (numRows == m.rows() && numCols == m.columns()) {
181:                    final int array[][] = new int[numRows][numCols];
182:                    for (int i = 0; i < numRows; i++) {
183:                        array[i][0] = getElement(i, 0) - m.getElement(i, 0);
184:                        for (int j = 1; j < numCols; j++)
185:                            array[i][j] = getElement(i, j) - m.getElement(i, j);
186:                    }
187:                    return new IntegerSquareMatrix(array);
188:                } else {
189:                    throw new MatrixDimensionException(
190:                            "Matrices are different sizes.");
191:                }
192:            }
193:
194:            // SCALAR MULTIPLICATION
195:
196:            /**
197:             * Returns the multiplication of this matrix by a scalar.
198:             * @param x a int.
199:             * @return a int square matrix.
200:             */
201:            public AbstractIntegerMatrix scalarMultiply(final int x) {
202:                final int array[][] = new int[numRows][numCols];
203:                for (int i = 0; i < numRows; i++) {
204:                    array[i][0] = x * getElement(i, 0);
205:                    for (int j = 1; j < numCols; j++)
206:                        array[i][j] = x * getElement(i, j);
207:                }
208:                return new IntegerSquareMatrix(array);
209:            }
210:
211:            // SCALAR DIVISON
212:
213:            // SCALAR PRODUCT
214:
215:            /**
216:             * Returns the scalar product of this matrix and another.
217:             * @param m a int square matrix.
218:             * @exception MatrixDimensionException If the matrices are not square or different sizes.
219:             */
220:            public final int scalarProduct(final AbstractIntegerMatrix m) {
221:                if (m instanceof  AbstractIntegerSquareMatrix)
222:                    return scalarProduct((AbstractIntegerSquareMatrix) m);
223:                else if (numRows == m.rows() && numCols == m.columns())
224:                    return scalarProduct(new SquareMatrixAdaptor(m));
225:                else
226:                    throw new MatrixDimensionException(
227:                            "Matrices are different sizes.");
228:            }
229:
230:            /**
231:             * Returns the scalar product of this matrix and another.
232:             * @param m a int square matrix.
233:             * @exception MatrixDimensionException If the matrices are different sizes.
234:             */
235:            public int scalarProduct(final AbstractIntegerSquareMatrix m) {
236:                if (numRows == m.rows() && numCols == m.columns()) {
237:                    int ans = 0;
238:                    for (int i = 0; i < numRows; i++) {
239:                        ans += getElement(i, 0) * m.getElement(i, 0);
240:                        for (int j = 1; j < numCols; j++)
241:                            ans += getElement(i, j) * m.getElement(i, j);
242:                    }
243:                    return ans;
244:                } else {
245:                    throw new MatrixDimensionException(
246:                            "Matrices are different sizes.");
247:                }
248:            }
249:
250:            // MATRIX MULTIPLICATION
251:
252:            /**
253:             * Returns the multiplication of this matrix and another.
254:             * @param m a int square matrix
255:             * @exception MatrixDimensionException If the matrices are different sizes.
256:             */
257:            public AbstractIntegerSquareMatrix multiply(
258:                    final AbstractIntegerSquareMatrix m) {
259:                if (numCols == m.rows()) {
260:                    final int mColumns = m.columns();
261:                    final int array[][] = new int[numRows][mColumns];
262:                    for (int j = 0; j < numRows; j++) {
263:                        for (int k = 0; k < mColumns; k++) {
264:                            array[j][k] = getElement(j, 0) * m.getElement(0, k);
265:                            for (int n = 1; n < numCols; n++)
266:                                array[j][k] += getElement(j, n)
267:                                        * m.getElement(n, k);
268:                        }
269:                    }
270:                    return new IntegerSquareMatrix(array);
271:                } else {
272:                    throw new MatrixDimensionException("Incompatible matrices.");
273:                }
274:            }
275:
276:            // DIRECT SUM
277:
278:            /**
279:             * Returns the direct sum of this matrix and another.
280:             */
281:            public AbstractIntegerSquareMatrix directSum(
282:                    final AbstractIntegerSquareMatrix m) {
283:                final int array[][] = new int[numRows + m.numRows][numCols
284:                        + m.numCols];
285:                for (int i = 0; i < numRows; i++) {
286:                    for (int j = 0; j < numCols; j++)
287:                        array[i][j] = getElement(i, j);
288:                }
289:                for (int i = 0; i < m.numRows; i++) {
290:                    for (int j = 0; j < m.numCols; j++)
291:                        array[i + numRows][j + numCols] = m.getElement(i, j);
292:                }
293:                return new IntegerSquareMatrix(array);
294:            }
295:
296:            // TENSOR PRODUCT
297:
298:            /**
299:             * Returns the tensor product of this matrix and another.
300:             */
301:            public AbstractIntegerSquareMatrix tensor(
302:                    final AbstractIntegerSquareMatrix m) {
303:                final int array[][] = new int[numRows * m.numRows][numCols
304:                        * m.numCols];
305:                for (int i = 0; i < numRows; i++) {
306:                    for (int j = 0; j < numCols; j++) {
307:                        for (int k = 0; k < m.numRows; j++) {
308:                            for (int l = 0; l < m.numCols; l++)
309:                                array[i * m.numRows + k][j * m.numCols + l] = getElement(
310:                                        i, j)
311:                                        * m.getElement(k, l);
312:                        }
313:                    }
314:                }
315:                return new IntegerSquareMatrix(array);
316:            }
317:
318:            // TRANSPOSE
319:
320:            /**
321:             * Returns the transpose of this matrix.
322:             * @return a int square matrix
323:             */
324:            public Matrix transpose() {
325:                final int array[][] = new int[numCols][numRows];
326:                for (int i = 0; i < numRows; i++) {
327:                    array[0][i] = getElement(i, 0);
328:                    for (int j = 1; j < numCols; j++)
329:                        array[j][i] = getElement(i, j);
330:                }
331:                return new IntegerSquareMatrix(array);
332:            }
333:
334:            // INVERSE
335:
336:            /**
337:             * Returns the inverse of this matrix.
338:             * @return a double square matrix.
339:             */
340:            public AbstractDoubleSquareMatrix inverse() {
341:                final int N = numRows;
342:                final double arrayL[][] = new double[N][N];
343:                final double arrayU[][] = new double[N][N];
344:                final AbstractDoubleSquareMatrix lu[] = this .luDecompose(null);
345:                arrayL[0][0] = 1.0 / lu[0].getElement(0, 0);
346:                arrayU[0][0] = 1.0 / lu[1].getElement(0, 0);
347:                for (int i = 1; i < N; i++) {
348:                    arrayL[i][i] = 1.0 / lu[0].getElement(i, i);
349:                    arrayU[i][i] = 1.0 / lu[1].getElement(i, i);
350:                }
351:                for (int i = 0; i < N - 1; i++) {
352:                    for (int j = i + 1; j < N; j++) {
353:                        double tmpL = 0.0, tmpU = 0.0;
354:                        for (int k = i; k < j; k++) {
355:                            tmpL -= lu[0].getElement(j, k) * arrayL[k][i];
356:                            tmpU -= arrayU[i][k] * lu[1].getElement(k, j);
357:                        }
358:                        arrayL[j][i] = tmpL / lu[0].getElement(j, j);
359:                        arrayU[i][j] = tmpU / lu[1].getElement(j, j);
360:                    }
361:                }
362:                // matrix multiply arrayU x arrayL
363:                final double inv[][] = new double[N][N];
364:                for (int i = 0; i < N; i++) {
365:                    for (int j = 0; j < i; j++) {
366:                        for (int k = i; k < N; k++)
367:                            inv[i][LUpivot[j]] += arrayU[i][k] * arrayL[k][j];
368:                    }
369:                    for (int j = i; j < N; j++) {
370:                        for (int k = j; k < N; k++)
371:                            inv[i][LUpivot[j]] += arrayU[i][k] * arrayL[k][j];
372:                    }
373:                }
374:                return new DoubleSquareMatrix(inv);
375:            }
376:
377:            // LU DECOMPOSITION
378:
379:            /**
380:             * Returns the LU decomposition of this matrix.
381:             * @param pivot an empty array of length <code>rows()+1</code>
382:             * to hold the pivot information (null if not interested).
383:             * The last array element will contain the parity.
384:             * @return an array with [0] containing the L-matrix
385:             * and [1] containing the U-matrix.
386:             * @jsci.planetmath LUDecomposition
387:             */
388:            public AbstractDoubleSquareMatrix[] luDecompose(int pivot[]) {
389:                if (LU != null) {
390:                    if (pivot != null)
391:                        System.arraycopy(LUpivot, 0, pivot, 0, pivot.length);
392:                    return LU;
393:                }
394:                int pivotrow;
395:                final int N = numRows;
396:                final double arrayL[][] = new double[N][N];
397:                final double arrayU[][] = new double[N][N];
398:                if (pivot == null)
399:                    pivot = new int[N + 1];
400:                for (int i = 0; i < N; i++)
401:                    pivot[i] = i;
402:                pivot[N] = 1;
403:                // LU decomposition to arrayU
404:                for (int j = 0; j < N; j++) {
405:                    for (int i = 0; i < j; i++) {
406:                        double tmp = getElement(pivot[i], j);
407:                        for (int k = 0; k < i; k++)
408:                            tmp -= arrayU[i][k] * arrayU[k][j];
409:                        arrayU[i][j] = tmp;
410:                    }
411:                    double max = 0.0;
412:                    pivotrow = j;
413:                    for (int i = j; i < N; i++) {
414:                        double tmp = getElement(pivot[i], j);
415:                        for (int k = 0; k < j; k++)
416:                            tmp -= arrayU[i][k] * arrayU[k][j];
417:                        arrayU[i][j] = tmp;
418:                        // while we're here search for a pivot for arrayU[j][j]
419:                        tmp = Math.abs(tmp);
420:                        if (tmp > max) {
421:                            max = tmp;
422:                            pivotrow = i;
423:                        }
424:                    }
425:                    // swap row j with pivotrow
426:                    if (pivotrow != j) {
427:                        double[] tmprow = arrayU[j];
428:                        arrayU[j] = arrayU[pivotrow];
429:                        arrayU[pivotrow] = tmprow;
430:                        int k = pivot[j];
431:                        pivot[j] = pivot[pivotrow];
432:                        pivot[pivotrow] = k;
433:                        // update parity
434:                        pivot[N] = -pivot[N];
435:                    }
436:                    // divide by pivot
437:                    double tmp = arrayU[j][j];
438:                    for (int i = j + 1; i < N; i++)
439:                        arrayU[i][j] /= tmp;
440:                }
441:                // move lower triangular part to arrayL
442:                for (int j = 0; j < N; j++) {
443:                    arrayL[j][j] = 1.0;
444:                    for (int i = j + 1; i < N; i++) {
445:                        arrayL[i][j] = arrayU[i][j];
446:                        arrayU[i][j] = 0.0;
447:                    }
448:                }
449:                LU = new AbstractDoubleSquareMatrix[2];
450:                LU[0] = new DoubleSquareMatrix(arrayL);
451:                LU[1] = new DoubleSquareMatrix(arrayU);
452:                LUpivot = new int[pivot.length];
453:                System.arraycopy(pivot, 0, LUpivot, 0, pivot.length);
454:                return LU;
455:            }
456:
457:            /**
458:             * Returns the LU decomposition of this matrix.
459:             * Warning: no pivoting.
460:             * @return an array with [0] containing the L-matrix
461:             * and [1] containing the U-matrix.
462:             * @jsci.planetmath LUDecomposition
463:             */
464:            public AbstractDoubleSquareMatrix[] luDecompose() {
465:                final int N = numRows;
466:                final double arrayL[][] = new double[N][N];
467:                final double arrayU[][] = new double[N][N];
468:                // LU decomposition to arrayU
469:                for (int j = 0; j < N; j++) {
470:                    for (int i = 0; i < j; i++) {
471:                        double tmp = getElement(i, j);
472:                        for (int k = 0; k < i; k++)
473:                            tmp -= arrayU[i][k] * arrayU[k][j];
474:                        arrayU[i][j] = tmp;
475:                    }
476:                    for (int i = j; i < N; i++) {
477:                        double tmp = getElement(i, j);
478:                        for (int k = 0; k < j; k++)
479:                            tmp -= arrayU[i][k] * arrayU[k][j];
480:                        arrayU[i][j] = tmp;
481:                    }
482:                    // divide
483:                    double tmp = arrayU[j][j];
484:                    for (int i = j + 1; i < N; i++)
485:                        arrayU[i][j] /= tmp;
486:                }
487:                // move lower triangular part to arrayL
488:                for (int j = 0; j < N; j++) {
489:                    arrayL[j][j] = 1.0;
490:                    for (int i = j + 1; i < N; i++) {
491:                        arrayL[i][j] = arrayU[i][j];
492:                        arrayU[i][j] = 0.0;
493:                    }
494:                }
495:                AbstractDoubleSquareMatrix[] lu = new AbstractDoubleSquareMatrix[2];
496:                lu[0] = new DoubleSquareMatrix(arrayL);
497:                lu[1] = new DoubleSquareMatrix(arrayU);
498:                return lu;
499:            }
500:
501:            // CHOLESKY DECOMPOSITION
502:
503:            /**
504:             * Returns the Cholesky decomposition of this matrix.
505:             * Matrix must be symmetric and positive definite.
506:             * @return an array with [0] containing the L-matrix and [1] containing the U-matrix.
507:             * @jsci.planetmath CholeskyDecomposition
508:             */
509:            public AbstractDoubleSquareMatrix[] choleskyDecompose() {
510:                final int N = numRows;
511:                final double arrayL[][] = new double[N][N];
512:                final double arrayU[][] = new double[N][N];
513:                double tmp = Math.sqrt(getElement(0, 0));
514:                arrayL[0][0] = arrayU[0][0] = tmp;
515:                for (int i = 1; i < N; i++)
516:                    arrayL[i][0] = arrayU[0][i] = getElement(i, 0) / tmp;
517:                for (int j = 1; j < N; j++) {
518:                    tmp = getElement(j, j);
519:                    for (int i = 0; i < j; i++)
520:                        tmp -= arrayL[j][i] * arrayL[j][i];
521:                    arrayL[j][j] = arrayU[j][j] = Math.sqrt(tmp);
522:                    for (int i = j + 1; i < N; i++) {
523:                        tmp = getElement(i, j);
524:                        for (int k = 0; k < i; k++)
525:                            tmp -= arrayL[j][k] * arrayU[k][i];
526:                        arrayL[i][j] = arrayU[j][i] = tmp / arrayU[j][j];
527:                    }
528:                }
529:                final AbstractDoubleSquareMatrix lu[] = new AbstractDoubleSquareMatrix[2];
530:                lu[0] = new DoubleSquareMatrix(arrayL);
531:                lu[1] = new DoubleSquareMatrix(arrayU);
532:                return lu;
533:            }
534:
535:            // QR DECOMPOSITION
536:
537:            /**
538:             * Returns the QR decomposition of this matrix.
539:             * Based on the code from <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
540:             * @return an array with [0] containing the Q-matrix and [1] containing the R-matrix.
541:             * @jsci.planetmath QRDecomposition
542:             */
543:            public AbstractDoubleSquareMatrix[] qrDecompose() {
544:                final int N = numRows;
545:                final double array[][] = new double[N][N];
546:                final double arrayQ[][] = new double[N][N];
547:                final double arrayR[][] = new double[N][N];
548:                // copy matrix
549:                for (int i = 0; i < N; i++) {
550:                    array[i][0] = getElement(i, 0);
551:                    for (int j = 1; j < N; j++)
552:                        array[i][j] = getElement(i, j);
553:                }
554:                for (int k = 0; k < N; k++) {
555:                    // compute l2-norm of kth column
556:                    double norm = array[k][k];
557:                    for (int i = k + 1; i < N; i++)
558:                        norm = ExtraMath.hypot(norm, array[i][k]);
559:                    if (norm != 0.0) {
560:                        // form kth Householder vector
561:                        if (array[k][k] < 0.0)
562:                            norm = -norm;
563:                        for (int i = k; i < N; i++)
564:                            array[i][k] /= norm;
565:                        array[k][k] += 1.0;
566:                        // apply transformation to remaining columns
567:                        for (int j = k + 1; j < N; j++) {
568:                            double s = array[k][k] * array[k][j];
569:                            for (int i = k + 1; i < N; i++)
570:                                s += array[i][k] * array[i][j];
571:                            s /= array[k][k];
572:                            for (int i = k; i < N; i++)
573:                                array[i][j] -= s * array[i][k];
574:                        }
575:                    }
576:                    arrayR[k][k] = -norm;
577:                }
578:                for (int k = N - 1; k >= 0; k--) {
579:                    arrayQ[k][k] = 1.0;
580:                    for (int j = k; j < N; j++) {
581:                        if (array[k][k] != 0.0) {
582:                            double s = array[k][k] * arrayQ[k][j];
583:                            for (int i = k + 1; i < N; i++)
584:                                s += array[i][k] * arrayQ[i][j];
585:                            s /= array[k][k];
586:                            for (int i = k; i < N; i++)
587:                                arrayQ[i][j] -= s * array[i][k];
588:                        }
589:                    }
590:                }
591:                for (int i = 0; i < N; i++) {
592:                    for (int j = i + 1; j < N; j++)
593:                        arrayR[i][j] = array[i][j];
594:                }
595:                final AbstractDoubleSquareMatrix qr[] = new AbstractDoubleSquareMatrix[2];
596:                qr[0] = new DoubleSquareMatrix(arrayQ);
597:                qr[1] = new DoubleSquareMatrix(arrayR);
598:                return qr;
599:            }
600:
601:            // SINGULAR VALUE DECOMPOSITION
602:
603:            /**
604:             * Returns the singular value decomposition of this matrix.
605:             * Based on the code from <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
606:             * @return an array with [0] containing the U-matrix, [1] containing the S-matrix and [2] containing the V-matrix.
607:             * @jsci.planetmath SingularValueDecomposition
608:             */
609:            public AbstractDoubleSquareMatrix[] singularValueDecompose() {
610:                final int N = numRows;
611:                final int Nm1 = N - 1;
612:                final double array[][] = new double[N][N];
613:                final double arrayU[][] = new double[N][N];
614:                final double arrayS[] = new double[N];
615:                final double arrayV[][] = new double[N][N];
616:                final double e[] = new double[N];
617:                final double work[] = new double[N];
618:                // copy matrix
619:                for (int i = 0; i < N; i++) {
620:                    array[i][0] = getElement(i, 0);
621:                    for (int j = 1; j < N; j++)
622:                        array[i][j] = getElement(i, j);
623:                }
624:                // reduce matrix to bidiagonal form
625:                for (int k = 0; k < Nm1; k++) {
626:                    // compute the transformation for the kth column
627:                    // compute l2-norm of kth column
628:                    arrayS[k] = array[k][k];
629:                    for (int i = k + 1; i < N; i++)
630:                        arrayS[k] = ExtraMath.hypot(arrayS[k], array[i][k]);
631:                    if (arrayS[k] != 0.0) {
632:                        if (array[k][k] < 0.0)
633:                            arrayS[k] = -arrayS[k];
634:                        for (int i = k; i < N; i++)
635:                            array[i][k] /= arrayS[k];
636:                        array[k][k] += 1.0;
637:                    }
638:                    arrayS[k] = -arrayS[k];
639:                    for (int j = k + 1; j < N; j++) {
640:                        if (arrayS[k] != 0.0) {
641:                            // apply the transformation
642:                            double t = array[k][k] * array[k][j];
643:                            for (int i = k + 1; i < N; i++)
644:                                t += array[i][k] * array[i][j];
645:                            t /= array[k][k];
646:                            for (int i = k; i < N; i++)
647:                                array[i][j] -= t * array[i][k];
648:                        }
649:                        e[j] = array[k][j];
650:                    }
651:                    for (int i = k; i < N; i++)
652:                        arrayU[i][k] = array[i][k];
653:                    if (k < N - 2) {
654:                        // compute the kth row transformation
655:                        // compute l2-norm of kth column
656:                        e[k] = e[k + 1];
657:                        for (int i = k + 2; i < N; i++)
658:                            e[k] = ExtraMath.hypot(e[k], e[i]);
659:                        if (e[k] != 0.0) {
660:                            if (e[k + 1] < 0.0)
661:                                e[k] = -e[k];
662:                            for (int i = k + 1; i < N; i++)
663:                                e[i] /= e[k];
664:                            e[k + 1] += 1.0;
665:                        }
666:                        e[k] = -e[k];
667:                        if (e[k] != 0.0) {
668:                            // apply the transformation
669:                            for (int i = k + 1; i < N; i++) {
670:                                work[i] = 0.0;
671:                                for (int j = k + 1; j < N; j++)
672:                                    work[i] += e[j] * array[i][j];
673:                            }
674:                            for (int j = k + 1; j < N; j++) {
675:                                double t = e[j] / e[k + 1];
676:                                for (int i = k + 1; i < N; i++)
677:                                    array[i][j] -= t * work[i];
678:                            }
679:                        }
680:                        for (int i = k + 1; i < N; i++)
681:                            arrayV[i][k] = e[i];
682:                    }
683:                }
684:                // setup the final bidiagonal matrix of order p
685:                int p = N;
686:                arrayS[Nm1] = array[Nm1][Nm1];
687:                e[N - 2] = array[N - 2][Nm1];
688:                e[Nm1] = 0.0;
689:                arrayU[Nm1][Nm1] = 1.0;
690:                for (int k = N - 2; k >= 0; k--) {
691:                    if (arrayS[k] != 0.0) {
692:                        for (int j = k + 1; j < N; j++) {
693:                            double t = arrayU[k][k] * arrayU[k][j];
694:                            for (int i = k + 1; i < N; i++)
695:                                t += arrayU[i][k] * arrayU[i][j];
696:                            t /= arrayU[k][k];
697:                            for (int i = k; i < N; i++)
698:                                arrayU[i][j] -= t * arrayU[i][k];
699:                        }
700:                        for (int i = k; i < N; i++)
701:                            arrayU[i][k] = -arrayU[i][k];
702:                        arrayU[k][k] += 1.0;
703:                        for (int i = 0; i < k - 1; i++)
704:                            arrayU[i][k] = 0.0;
705:                    } else {
706:                        for (int i = 0; i < N; i++)
707:                            arrayU[i][k] = 0.0;
708:                        arrayU[k][k] = 1.0;
709:                    }
710:                }
711:                for (int k = Nm1; k >= 0; k--) {
712:                    if (k < N - 2 && e[k] != 0.0) {
713:                        for (int j = k + 1; j < N; j++) {
714:                            double t = arrayV[k + 1][k] * arrayV[k + 1][j];
715:                            for (int i = k + 2; i < N; i++)
716:                                t += arrayV[i][k] * arrayV[i][j];
717:                            t /= arrayV[k + 1][k];
718:                            for (int i = k + 1; i < N; i++)
719:                                arrayV[i][j] -= t * arrayV[i][k];
720:                        }
721:                    }
722:                    for (int i = 0; i < N; i++)
723:                        arrayV[i][k] = 0.0;
724:                    arrayV[k][k] = 1.0;
725:                }
726:                final double eps = Math.pow(2.0, -52.0);
727:                int iter = 0;
728:                while (p > 0) {
729:                    int k, action;
730:                    // action = 1 if arrayS[p] and e[k-1] are negligible and k<p
731:                    // action = 2 if arrayS[k] is negligible and k<p
732:                    // action = 3 if e[k-1] is negligible, k<p, and arrayS[k], ..., arrayS[p] are not negligible (QR step)
733:                    // action = 4 if e[p-1] is negligible (convergence)
734:                    for (k = p - 2; k >= -1; k--) {
735:                        if (k == -1)
736:                            break;
737:                        if (Math.abs(e[k]) <= eps
738:                                * (Math.abs(arrayS[k]) + Math
739:                                        .abs(arrayS[k + 1]))) {
740:                            e[k] = 0.0;
741:                            break;
742:                        }
743:                    }
744:                    if (k == p - 2) {
745:                        action = 4;
746:                    } else {
747:                        int ks;
748:                        for (ks = p - 1; ks >= k; ks--) {
749:                            if (ks == k)
750:                                break;
751:                            double t = (ks != p ? Math.abs(e[ks]) : 0.0)
752:                                    + (ks != k + 1 ? Math.abs(e[ks - 1]) : 0.0);
753:                            if (Math.abs(arrayS[ks]) <= eps * t) {
754:                                arrayS[ks] = 0.0;
755:                                break;
756:                            }
757:                        }
758:                        if (ks == k) {
759:                            action = 3;
760:                        } else if (ks == p - 1) {
761:                            action = 1;
762:                        } else {
763:                            action = 2;
764:                            k = ks;
765:                        }
766:                    }
767:                    k++;
768:                    switch (action) {
769:                    // deflate negligible arrayS[p]
770:                    case 1: {
771:                        double f = e[p - 2];
772:                        e[p - 2] = 0.0;
773:                        for (int j = p - 2; j >= k; j--) {
774:                            double t = ExtraMath.hypot(arrayS[j], f);
775:                            final double cs = arrayS[j] / t;
776:                            final double sn = f / t;
777:                            arrayS[j] = t;
778:                            if (j != k) {
779:                                f = -sn * e[j - 1];
780:                                e[j - 1] *= cs;
781:                            }
782:                            for (int i = 0; i < N; i++) {
783:                                t = cs * arrayV[i][j] + sn * arrayV[i][p - 1];
784:                                arrayV[i][p - 1] = -sn * arrayV[i][j] + cs
785:                                        * arrayV[i][p - 1];
786:                                arrayV[i][j] = t;
787:                            }
788:                        }
789:                    }
790:                        break;
791:                    // split at negligible arrayS[k]
792:                    case 2: {
793:                        double f = e[k - 1];
794:                        e[k - 1] = 0.0;
795:                        for (int j = k; j < p; j++) {
796:                            double t = ExtraMath.hypot(arrayS[j], f);
797:                            final double cs = arrayS[j] / t;
798:                            final double sn = f / t;
799:                            arrayS[j] = t;
800:                            f = -sn * e[j];
801:                            e[j] *= cs;
802:                            for (int i = 0; i < N; i++) {
803:                                t = cs * arrayU[i][j] + sn * arrayU[i][k - 1];
804:                                arrayU[i][k - 1] = -sn * arrayU[i][j] + cs
805:                                        * arrayU[i][k - 1];
806:                                arrayU[i][j] = t;
807:                            }
808:                        }
809:                    }
810:                        break;
811:                    // perform one QR step
812:                    case 3: {
813:                        // calculate the shift
814:                        final double scale = Math.max(Math.max(Math.max(Math
815:                                .max(Math.abs(arrayS[p - 1]), Math
816:                                        .abs(arrayS[p - 2])), Math
817:                                .abs(e[p - 2])), Math.abs(arrayS[k])), Math
818:                                .abs(e[k]));
819:                        double sp = arrayS[p - 1] / scale;
820:                        double spm1 = arrayS[p - 2] / scale;
821:                        double epm1 = e[p - 2] / scale;
822:                        double sk = arrayS[k] / scale;
823:                        double ek = e[k] / scale;
824:                        double b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
825:                        double c = (sp * epm1) * (sp * epm1);
826:                        double shift = 0.0;
827:                        if (b != 0.0 || c != 0.0) {
828:                            shift = Math.sqrt(b * b + c);
829:                            if (b < 0.0)
830:                                shift = -shift;
831:                            shift = c / (b + shift);
832:                        }
833:                        double f = (sk + sp) * (sk - sp) + shift;
834:                        double g = sk * ek;
835:                        // chase zeros
836:                        for (int j = k; j < p - 1; j++) {
837:                            double t = ExtraMath.hypot(f, g);
838:                            double cs = f / t;
839:                            double sn = g / t;
840:                            if (j != k)
841:                                e[j - 1] = t;
842:                            f = cs * arrayS[j] + sn * e[j];
843:                            e[j] = cs * e[j] - sn * arrayS[j];
844:                            g = sn * arrayS[j + 1];
845:                            arrayS[j + 1] *= cs;
846:                            for (int i = 0; i < N; i++) {
847:                                t = cs * arrayV[i][j] + sn * arrayV[i][j + 1];
848:                                arrayV[i][j + 1] = -sn * arrayV[i][j] + cs
849:                                        * arrayV[i][j + 1];
850:                                arrayV[i][j] = t;
851:                            }
852:                            t = ExtraMath.hypot(f, g);
853:                            cs = f / t;
854:                            sn = g / t;
855:                            arrayS[j] = t;
856:                            f = cs * e[j] + sn * arrayS[j + 1];
857:                            arrayS[j + 1] = -sn * e[j] + cs * arrayS[j + 1];
858:                            g = sn * e[j + 1];
859:                            e[j + 1] *= cs;
860:                            if (j < Nm1) {
861:                                for (int i = 0; i < N; i++) {
862:                                    t = cs * arrayU[i][j] + sn
863:                                            * arrayU[i][j + 1];
864:                                    arrayU[i][j + 1] = -sn * arrayU[i][j] + cs
865:                                            * arrayU[i][j + 1];
866:                                    arrayU[i][j] = t;
867:                                }
868:                            }
869:                        }
870:                        e[p - 2] = f;
871:                        iter++;
872:                    }
873:                        break;
874:                    // convergence
875:                    case 4: {
876:                        // make the singular values positive
877:                        if (arrayS[k] <= 0.0) {
878:                            arrayS[k] = -arrayS[k];
879:                            for (int i = 0; i < p; i++)
880:                                arrayV[i][k] = -arrayV[i][k];
881:                        }
882:                        // order the singular values
883:                        while (k < p - 1) {
884:                            if (arrayS[k] >= arrayS[k + 1])
885:                                break;
886:                            double tmp = arrayS[k];
887:                            arrayS[k] = arrayS[k + 1];
888:                            arrayS[k + 1] = tmp;
889:                            if (k < Nm1) {
890:                                for (int i = 0; i < N; i++) {
891:                                    tmp = arrayU[i][k + 1];
892:                                    arrayU[i][k + 1] = arrayU[i][k];
893:                                    arrayU[i][k] = tmp;
894:                                    tmp = arrayV[i][k + 1];
895:                                    arrayV[i][k + 1] = arrayV[i][k];
896:                                    arrayV[i][k] = tmp;
897:                                }
898:                            }
899:                            k++;
900:                        }
901:                        iter = 0;
902:                        p--;
903:                    }
904:                        break;
905:                    }
906:                }
907:                final AbstractDoubleSquareMatrix svd[] = new AbstractDoubleSquareMatrix[3];
908:                svd[0] = new DoubleSquareMatrix(arrayU);
909:                svd[1] = new DoubleDiagonalMatrix(arrayS);
910:                svd[2] = new DoubleSquareMatrix(arrayV);
911:                return svd;
912:            }
913:
914:            private static class SquareMatrixAdaptor extends
915:                    AbstractIntegerSquareMatrix {
916:                private final AbstractIntegerMatrix matrix;
917:
918:                private SquareMatrixAdaptor(AbstractIntegerMatrix m) {
919:                    super (m.rows());
920:                    matrix = m;
921:                }
922:
923:                public int getElement(int i, int j) {
924:                    return matrix.getElement(i, j);
925:                }
926:
927:                public void setElement(int i, int j, int x) {
928:                    matrix.setElement(i, j, x);
929:                }
930:            }
931:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.