Source Code Cross Referenced for AbstractComplexMatrix.java in  » Science » JSci » JSci » maths » matrices » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » JSci » JSci.maths.matrices 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /* AUTO-GENERATED */
002:        package JSci.maths.matrices;
003:
004:        import JSci.GlobalSettings;
005:        import JSci.maths.MathDouble;
006:        import JSci.maths.MathInteger;
007:        import JSci.maths.Complex;
008:        import JSci.maths.ComplexMapping;
009:        import JSci.maths.DimensionException;
010:        import JSci.maths.vectors.AbstractComplexVector;
011:        import JSci.maths.vectors.ComplexVector;
012:        import JSci.maths.groups.AbelianGroup;
013:        import JSci.maths.algebras.*;
014:        import JSci.maths.fields.*;
015:
016:        /**
017:         * The AbstractComplexMatrix class provides an object for encapsulating matrices containing complex numbers.
018:         * @version 2.2
019:         * @author Mark Hale
020:         */
021:        public abstract class AbstractComplexMatrix extends Matrix {
022:            /**
023:             * Constructs a matrix.
024:             */
025:            protected AbstractComplexMatrix(final int rows, final int cols) {
026:                super (rows, cols);
027:            }
028:
029:            /**
030:             * Compares two complex matrices for equality.
031:             * @param obj a complex matrix
032:             */
033:            public final boolean equals(Object obj) {
034:                if (obj instanceof  AbstractComplexMatrix) {
035:                    return equals((AbstractComplexMatrix) obj);
036:                } else {
037:                    return false;
038:                }
039:            }
040:
041:            /**
042:             * Compares two complex matrices for equality.
043:             * Two matrices are considered to be equal if the Frobenius norm of their difference is within the zero tolerance.
044:             * @param m a complex matrix
045:             */
046:            public final boolean equals(AbstractComplexMatrix m) {
047:                return equals(m, GlobalSettings.ZERO_TOL);
048:            }
049:
050:            public boolean equals(AbstractComplexMatrix m, double tol) {
051:                if (m != null && numRows == m.rows() && numCols == m.columns()) {
052:                    double sumSqr = 0.0;
053:                    for (int i = 0; i < numRows; i++) {
054:                        for (int j = 0; j < numCols; j++) {
055:                            double deltaRe = getRealElement(i, j)
056:                                    - m.getRealElement(i, j);
057:                            double deltaIm = getImagElement(i, j)
058:                                    - m.getImagElement(i, j);
059:                            sumSqr += deltaRe * deltaRe + deltaIm * deltaIm;
060:                        }
061:                    }
062:                    return (sumSqr <= tol * tol);
063:                } else {
064:                    return false;
065:                }
066:            }
067:
068:            /**
069:             * Returns a string representing this matrix.
070:             */
071:            public String toString() {
072:                final StringBuffer buf = new StringBuffer(5 * numRows * numCols);
073:                for (int i = 0; i < numRows; i++) {
074:                    for (int j = 0; j < numCols; j++) {
075:                        buf.append(getElement(i, j));
076:                        buf.append(' ');
077:                    }
078:                    buf.append('\n');
079:                }
080:                return buf.toString();
081:            }
082:
083:            /**
084:             * Returns a hashcode for this matrix.
085:             */
086:            public int hashCode() {
087:                return (int) Math.exp(infNorm());
088:            }
089:
090:            /**
091:             * Returns the real part of this complex matrix.
092:             * @return a double matrix
093:             */
094:            public AbstractDoubleMatrix real() {
095:                final double ans[][] = new double[numRows][numCols];
096:                for (int i = 0; i < numRows; i++) {
097:                    for (int j = 0; j < numCols; j++)
098:                        ans[i][j] = getElement(i, j).real();
099:                }
100:                return new DoubleMatrix(ans);
101:            }
102:
103:            /**
104:             * Returns the imaginary part of this complex matrix.
105:             * @return a double matrix
106:             */
107:            public AbstractDoubleMatrix imag() {
108:                final double ans[][] = new double[numRows][numCols];
109:                for (int i = 0; i < numRows; i++) {
110:                    for (int j = 0; j < numCols; j++)
111:                        ans[i][j] = getElement(i, j).imag();
112:                }
113:                return new DoubleMatrix(ans);
114:            }
115:
116:            /**
117:             * Returns an element of the matrix.
118:             * @param i row index of the element
119:             * @param j column index of the element
120:             * @exception MatrixDimensionException If attempting to access an invalid element.
121:             */
122:            public abstract Complex getElement(final int i, final int j);
123:
124:            /**
125:             * Returns the real part of an element of the matrix.
126:             * @param i row index of the element
127:             * @param j column index of the element
128:             * @exception MatrixDimensionException If attempting to access an invalid element.
129:             */
130:            public abstract double getRealElement(final int i, final int j);
131:
132:            /**
133:             * Returns the imag part of an element of the matrix.
134:             * @param i row index of the element
135:             * @param j column index of the element
136:             * @exception MatrixDimensionException If attempting to access an invalid element.
137:             */
138:            public abstract double getImagElement(final int i, final int j);
139:
140:            /**
141:             * Sets the value of an element of the matrix.
142:             * Should only be used to initialise this matrix.
143:             * @param i row index of the element
144:             * @param j column index of the element
145:             * @param z a complex number
146:             * @exception MatrixDimensionException If attempting to access an invalid element.
147:             */
148:            public abstract void setElement(final int i, final int j,
149:                    final Complex z);
150:
151:            /**
152:             * Sets the value of an element of the matrix.
153:             * Should only be used to initialise this matrix.
154:             * @param i row index of the element
155:             * @param j column index of the element
156:             * @param x the real part of a complex number
157:             * @param y the imaginary part of a complex number
158:             * @exception MatrixDimensionException If attempting to access an invalid element.
159:             */
160:            public abstract void setElement(final int i, final int j,
161:                    final double x, final double y);
162:
163:            public Object getSet() {
164:                throw new RuntimeException("Not implemented: file bug");
165:            }
166:
167:            /**
168:             * Returns the l<sup><img border=0 alt="infinity" src="doc-files/infinity.gif"></sup>-norm.
169:             * @author Taber Smith
170:             */
171:            public double infNorm() {
172:                double result = 0.0, tmpResult;
173:                for (int i = 0; i < numRows; i++) {
174:                    tmpResult = 0.0;
175:                    for (int j = 0; j < numCols; j++)
176:                        tmpResult += getElement(i, j).norm();
177:                    if (tmpResult > result)
178:                        result = tmpResult;
179:                }
180:                return result;
181:            }
182:
183:            /**
184:             * Returns the Frobenius or Hilbert-Schmidt (l<sup>2</sup>) norm.
185:             * @jsci.planetmath FrobeniusMatrixNorm
186:             * @author Taber Smith
187:             */
188:            public double frobeniusNorm() {
189:                double result = 0.0;
190:                for (int i = 0; i < numRows; i++) {
191:                    for (int j = 0; j < numCols; j++)
192:                        result += getRealElement(i, j) * getRealElement(i, j)
193:                                + getImagElement(i, j) * getImagElement(i, j);
194:                }
195:                return Math.sqrt(result);
196:            }
197:
198:            //============
199:            // OPERATIONS
200:            //============
201:
202:            /**
203:             * Returns the negative of this matrix.
204:             */
205:            public AbelianGroup.Member negate() {
206:                final double arrayRe[][] = new double[numRows][numCols];
207:                final double arrayIm[][] = new double[numRows][numCols];
208:                for (int i = 0; i < numRows; i++) {
209:                    arrayRe[i][0] = -getRealElement(i, 0);
210:                    arrayIm[i][0] = -getImagElement(i, 0);
211:                    for (int j = 1; j < numCols; j++) {
212:                        arrayRe[i][j] = -getRealElement(i, j);
213:                        arrayIm[i][j] = -getImagElement(i, j);
214:                    }
215:                }
216:                return new ComplexMatrix(arrayRe, arrayIm);
217:            }
218:
219:            // ADDITION
220:
221:            /**
222:             * Returns the addition of this matrix and another.
223:             */
224:            public final AbelianGroup.Member add(final AbelianGroup.Member m) {
225:                if (m instanceof  AbstractComplexMatrix)
226:                    return add((AbstractComplexMatrix) m);
227:                else
228:                    throw new IllegalArgumentException(
229:                            "Member class not recognised by this method.");
230:            }
231:
232:            /**
233:             * Returns the addition of this matrix and another.
234:             * @param m a complex matrix
235:             * @exception MatrixDimensionException If the matrices are different sizes.
236:             */
237:            public AbstractComplexMatrix add(final AbstractComplexMatrix m) {
238:                if (numRows == m.rows() && numCols == m.columns()) {
239:                    final double arrayRe[][] = new double[numRows][numCols];
240:                    final double arrayIm[][] = new double[numRows][numCols];
241:                    for (int i = 0; i < numRows; i++) {
242:                        arrayRe[i][0] = getRealElement(i, 0)
243:                                + m.getRealElement(i, 0);
244:                        arrayIm[i][0] = getImagElement(i, 0)
245:                                + m.getImagElement(i, 0);
246:                        for (int j = 1; j < numCols; j++) {
247:                            arrayRe[i][j] = getRealElement(i, j)
248:                                    + m.getRealElement(i, j);
249:                            arrayIm[i][j] = getImagElement(i, j)
250:                                    + m.getImagElement(i, j);
251:                        }
252:                    }
253:                    return new ComplexMatrix(arrayRe, arrayIm);
254:                } else
255:                    throw new MatrixDimensionException(
256:                            "Matrices are different sizes.");
257:            }
258:
259:            // SUBTRACTION
260:
261:            /**
262:             * Returns the subtraction of this matrix by another.
263:             */
264:            public final AbelianGroup.Member subtract(
265:                    final AbelianGroup.Member m) {
266:                if (m instanceof  AbstractComplexMatrix)
267:                    return subtract((AbstractComplexMatrix) m);
268:                else
269:                    throw new IllegalArgumentException(
270:                            "Member class not recognised by this method.");
271:            }
272:
273:            /**
274:             * Returns the subtraction of this matrix by another.
275:             * @param m a complex matrix
276:             * @exception MatrixDimensionException If the matrices are different sizes.
277:             */
278:            public AbstractComplexMatrix subtract(final AbstractComplexMatrix m) {
279:                if (numRows == m.rows() && numCols == m.columns()) {
280:                    final double arrayRe[][] = new double[numRows][numCols];
281:                    final double arrayIm[][] = new double[numRows][numCols];
282:                    for (int i = 0; i < numRows; i++) {
283:                        arrayRe[i][0] = getRealElement(i, 0)
284:                                - m.getRealElement(i, 0);
285:                        arrayIm[i][0] = getImagElement(i, 0)
286:                                - m.getImagElement(i, 0);
287:                        for (int j = 1; j < numCols; j++) {
288:                            arrayRe[i][j] = getRealElement(i, j)
289:                                    - m.getRealElement(i, j);
290:                            arrayIm[i][j] = getImagElement(i, j)
291:                                    - m.getImagElement(i, j);
292:                        }
293:                    }
294:                    return new ComplexMatrix(arrayRe, arrayIm);
295:                } else
296:                    throw new MatrixDimensionException(
297:                            "Matrices are different sizes.");
298:            }
299:
300:            // SCALAR MULTIPLICATION
301:
302:            /**
303:             * Returns the multiplication of this matrix by a scalar.
304:             */
305:            public final Module.Member scalarMultiply(Ring.Member x) {
306:                if (x instanceof  Complex)
307:                    return scalarMultiply((Complex) x);
308:                else if (x instanceof  MathDouble)
309:                    return scalarMultiply(((MathDouble) x).value());
310:                else if (x instanceof  MathInteger)
311:                    return scalarMultiply(((MathInteger) x).value());
312:                else
313:                    throw new IllegalArgumentException(
314:                            "Member class not recognised by this method.");
315:            }
316:
317:            /**
318:             * Returns the multiplication of this matrix by a scalar.
319:             * @param z a complex number
320:             * @return a complex matrix
321:             */
322:            public AbstractComplexMatrix scalarMultiply(final Complex z) {
323:                final double real = z.real();
324:                final double imag = z.imag();
325:                final double arrayRe[][] = new double[numRows][numCols];
326:                final double arrayIm[][] = new double[numRows][numCols];
327:                for (int i = 0; i < numRows; i++) {
328:                    arrayRe[i][0] = real * getRealElement(i, 0) - imag
329:                            * getImagElement(i, 0);
330:                    arrayIm[i][0] = imag * getRealElement(i, 0) + real
331:                            * getImagElement(i, 0);
332:                    for (int j = 1; j < numCols; j++) {
333:                        arrayRe[i][j] = real * getRealElement(i, j) - imag
334:                                * getImagElement(i, j);
335:                        arrayIm[i][j] = imag * getRealElement(i, j) + real
336:                                * getImagElement(i, j);
337:                    }
338:                }
339:                return new ComplexMatrix(arrayRe, arrayIm);
340:            }
341:
342:            /**
343:             * Returns the multiplication of this matrix by a scalar.
344:             * @param x a double
345:             * @return a complex matrix
346:             */
347:            public AbstractComplexMatrix scalarMultiply(final double x) {
348:                final double arrayRe[][] = new double[numRows][numCols];
349:                final double arrayIm[][] = new double[numRows][numCols];
350:                for (int i = 0; i < numRows; i++) {
351:                    arrayRe[i][0] = x * getRealElement(i, 0);
352:                    arrayIm[i][0] = x * getImagElement(i, 0);
353:                    for (int j = 1; j < numCols; j++) {
354:                        arrayRe[i][j] = x * getRealElement(i, j);
355:                        arrayIm[i][j] = x * getImagElement(i, j);
356:                    }
357:                }
358:                return new ComplexMatrix(arrayRe, arrayIm);
359:            }
360:
361:            // SCALAR DIVISON
362:
363:            /**
364:             * Returns the division of this matrix by a scalar.
365:             */
366:            public final VectorSpace.Member scalarDivide(Field.Member x) {
367:                if (x instanceof  Complex)
368:                    return scalarDivide((Complex) x);
369:                if (x instanceof  MathDouble)
370:                    return scalarDivide(((MathDouble) x).value());
371:                else
372:                    throw new IllegalArgumentException(
373:                            "Member class not recognised by this method.");
374:            }
375:
376:            /**
377:             * Returns the division of this matrix by a scalar.
378:             * @param z a complex number
379:             * @return a complex matrix
380:             */
381:            public AbstractComplexMatrix scalarDivide(final Complex z) {
382:                final Complex array[][] = new Complex[numRows][numCols];
383:                for (int i = 0; i < numRows; i++) {
384:                    array[i][0] = getElement(i, 0).divide(z);
385:                    for (int j = 1; j < numCols; j++)
386:                        array[i][j] = getElement(i, j).divide(z);
387:                }
388:                return new ComplexMatrix(array);
389:            }
390:
391:            /**
392:             * Returns the division of this matrix by a scalar.
393:             * @param x a double
394:             * @return a complex matrix
395:             */
396:            public AbstractComplexMatrix scalarDivide(final double x) {
397:                final double arrayRe[][] = new double[numRows][numCols];
398:                final double arrayIm[][] = new double[numRows][numCols];
399:                for (int i = 0; i < numRows; i++) {
400:                    arrayRe[i][0] = getRealElement(i, 0) / x;
401:                    arrayIm[i][0] = getImagElement(i, 0) / x;
402:                    for (int j = 1; j < numCols; j++) {
403:                        arrayRe[i][j] = getRealElement(i, j) / x;
404:                        arrayIm[i][j] = getImagElement(i, j) / x;
405:                    }
406:                }
407:                return new ComplexMatrix(arrayRe, arrayIm);
408:            }
409:
410:            // SCALAR PRODUCT
411:
412:            /**
413:             * Returns the scalar product of this matrix and another.
414:             * @param m a complex matrix.
415:             * @exception MatrixDimensionException If the matrices are different sizes.
416:             */
417:            public Complex scalarProduct(final AbstractComplexMatrix m) {
418:                if (numRows == m.rows() && numCols == m.columns()) {
419:                    double real = 0.0, imag = 0.0;
420:                    for (int i = 0; i < numRows; i++) {
421:                        real += getRealElement(i, 0) * m.getRealElement(i, 0)
422:                                + getImagElement(i, 0) * m.getImagElement(i, 0);
423:                        imag += getImagElement(i, 0) * m.getRealElement(i, 0)
424:                                - getRealElement(i, 0) * m.getImagElement(i, 0);
425:                        for (int j = 1; j < numCols; j++) {
426:                            real += getRealElement(i, j)
427:                                    * m.getRealElement(i, j)
428:                                    + getImagElement(i, j)
429:                                    * m.getImagElement(i, j);
430:                            imag += getImagElement(i, j)
431:                                    * m.getRealElement(i, j)
432:                                    - getRealElement(i, j)
433:                                    * m.getImagElement(i, j);
434:                        }
435:                    }
436:                    return new Complex(real, imag);
437:                } else {
438:                    throw new MatrixDimensionException(
439:                            "Matrices are different sizes.");
440:                }
441:            }
442:
443:            // MATRIX MULTIPLICATION
444:
445:            /**
446:             * Returns the multiplication of a vector by this matrix.
447:             * @param v a complex vector
448:             * @exception DimensionException If the matrix and vector are incompatible.
449:             */
450:            public AbstractComplexVector multiply(final AbstractComplexVector v) {
451:                if (numCols == v.dimension()) {
452:                    final double arrayRe[] = new double[numRows];
453:                    final double arrayIm[] = new double[numRows];
454:                    Complex tmp;
455:                    for (int i = 0; i < numRows; i++) {
456:                        tmp = getElement(i, 0).multiply(v.getComponent(0));
457:                        arrayRe[i] = tmp.real();
458:                        arrayIm[i] = tmp.imag();
459:                        for (int j = 1; j < numCols; j++) {
460:                            tmp = getElement(i, j).multiply(v.getComponent(j));
461:                            arrayRe[i] += tmp.real();
462:                            arrayIm[i] += tmp.imag();
463:                        }
464:                    }
465:                    return new ComplexVector(arrayRe, arrayIm);
466:                } else
467:                    throw new DimensionException(
468:                            "Matrix and vector are incompatible.");
469:            }
470:
471:            /**
472:             * Returns the multiplication of this matrix and another.
473:             */
474:            public final Ring.Member multiply(final Ring.Member m) {
475:                if (m instanceof  AbstractComplexMatrix)
476:                    return multiply((AbstractComplexMatrix) m);
477:                else
478:                    throw new IllegalArgumentException(
479:                            "Matrix class not recognised by this method.");
480:            }
481:
482:            /**
483:             * Returns the multiplication of this matrix and another.
484:             * @param m a complex matrix
485:             * @return an AbstractComplexMatrix or an AbstractComplexSquareMatrix as appropriate
486:             * @exception MatrixDimensionException If the matrices are incompatible.
487:             */
488:            public AbstractComplexMatrix multiply(final AbstractComplexMatrix m) {
489:                if (numCols == m.rows()) {
490:                    final double arrayRe[][] = new double[numRows][m.columns()];
491:                    final double arrayIm[][] = new double[numRows][m.columns()];
492:                    Complex tmp;
493:                    for (int j = 0; j < numRows; j++) {
494:                        for (int k = 0; k < m.columns(); k++) {
495:                            tmp = getElement(j, 0).multiply(m.getElement(0, k));
496:                            arrayRe[j][k] = tmp.real();
497:                            arrayIm[j][k] = tmp.imag();
498:                            for (int n = 1; n < numCols; n++) {
499:                                tmp = getElement(j, n).multiply(
500:                                        m.getElement(n, k));
501:                                arrayRe[j][k] += tmp.real();
502:                                arrayIm[j][k] += tmp.imag();
503:                            }
504:                        }
505:                    }
506:                    if (numRows == m.columns())
507:                        return new ComplexSquareMatrix(arrayRe, arrayIm);
508:                    else
509:                        return new ComplexMatrix(arrayRe, arrayIm);
510:                } else {
511:                    throw new MatrixDimensionException("Incompatible matrices.");
512:                }
513:            }
514:
515:            // DIRECT SUM
516:
517:            /**
518:             * Returns the direct sum of this matrix and another.
519:             */
520:            public AbstractComplexMatrix directSum(final AbstractComplexMatrix m) {
521:                final double arrayRe[][] = new double[numRows + m.numRows][numCols
522:                        + m.numCols];
523:                final double arrayIm[][] = new double[numRows + m.numRows][numCols
524:                        + m.numCols];
525:                for (int j, i = 0; i < numRows; i++) {
526:                    for (j = 0; j < numCols; j++) {
527:                        arrayRe[i][j] = getRealElement(i, j);
528:                        arrayIm[i][j] = getImagElement(i, j);
529:                    }
530:                }
531:                for (int j, i = 0; i < m.numRows; i++) {
532:                    for (j = 0; j < m.numCols; j++) {
533:                        arrayRe[i + numRows][j + numCols] = m.getRealElement(i,
534:                                j);
535:                        arrayIm[i + numRows][j + numCols] = m.getImagElement(i,
536:                                j);
537:                    }
538:                }
539:                return new ComplexMatrix(arrayRe, arrayIm);
540:            }
541:
542:            // TENSOR PRODUCT
543:
544:            /**
545:             * Returns the tensor product of this matrix and another.
546:             */
547:            public AbstractComplexMatrix tensor(final AbstractComplexMatrix m) {
548:                final double arrayRe[][] = new double[numRows * m.numRows][numCols
549:                        * m.numCols];
550:                final double arrayIm[][] = new double[numRows * m.numRows][numCols
551:                        * m.numCols];
552:                for (int i = 0; i < numRows; i++) {
553:                    for (int j = 0; j < numCols; j++) {
554:                        for (int k = 0; k < m.numRows; j++) {
555:                            for (int l = 0; l < m.numCols; l++) {
556:                                Complex tmp = getElement(i, j).multiply(
557:                                        m.getElement(k, l));
558:                                arrayRe[i * m.numRows + k][j * m.numCols + l] = tmp
559:                                        .real();
560:                                arrayIm[i * m.numRows + k][j * m.numCols + l] = tmp
561:                                        .imag();
562:                            }
563:                        }
564:                    }
565:                }
566:                return new ComplexMatrix(arrayRe, arrayIm);
567:            }
568:
569:            // HERMITIAN ADJOINT
570:
571:            /**
572:             * Returns the hermitian adjoint of this matrix.
573:             * @return a complex matrix
574:             */
575:            public AbstractComplexMatrix hermitianAdjoint() {
576:                final double arrayRe[][] = new double[numCols][numRows];
577:                final double arrayIm[][] = new double[numCols][numRows];
578:                for (int i = 0; i < numRows; i++) {
579:                    arrayRe[0][i] = getRealElement(i, 0);
580:                    arrayIm[0][i] = -getImagElement(i, 0);
581:                    for (int j = 1; j < numCols; j++) {
582:                        arrayRe[j][i] = getRealElement(i, j);
583:                        arrayIm[j][i] = -getImagElement(i, j);
584:                    }
585:                }
586:                return new ComplexMatrix(arrayRe, arrayIm);
587:            }
588:
589:            // CONJUGATE
590:
591:            /**
592:             * Returns the complex conjugate of this matrix.
593:             * @return a complex matrix
594:             */
595:            public AbstractComplexMatrix conjugate() {
596:                final double arrayRe[][] = new double[numCols][numRows];
597:                final double arrayIm[][] = new double[numCols][numRows];
598:                for (int i = 0; i < numRows; i++) {
599:                    arrayRe[i][0] = getRealElement(i, 0);
600:                    arrayIm[i][0] = -getImagElement(i, 0);
601:                    for (int j = 1; j < numCols; j++) {
602:                        arrayRe[i][j] = getRealElement(i, j);
603:                        arrayIm[i][j] = -getImagElement(i, j);
604:                    }
605:                }
606:                return new ComplexMatrix(arrayRe, arrayIm);
607:            }
608:
609:            // TRANSPOSE
610:
611:            /**
612:             * Returns the transpose of this matrix.
613:             * @return a complex matrix
614:             */
615:            public Matrix transpose() {
616:                final double arrayRe[][] = new double[numCols][numRows];
617:                final double arrayIm[][] = new double[numCols][numRows];
618:                for (int i = 0; i < numRows; i++) {
619:                    arrayRe[0][i] = getRealElement(i, 0);
620:                    arrayIm[0][i] = getImagElement(i, 0);
621:                    for (int j = 1; j < numCols; j++) {
622:                        arrayRe[j][i] = getRealElement(i, j);
623:                        arrayIm[j][i] = getImagElement(i, j);
624:                    }
625:                }
626:                return new ComplexMatrix(arrayRe, arrayIm);
627:            }
628:
629:            // MAP ELEMENTS
630:
631:            /**
632:             * Applies a function on all the matrix elements.
633:             * @param f a user-defined function
634:             * @return a complex matrix
635:             */
636:            public AbstractComplexMatrix mapElements(final ComplexMapping f) {
637:                final Complex array[][] = new Complex[numRows][numCols];
638:                for (int i = 0; i < numRows; i++) {
639:                    array[i][0] = f.map(getElement(i, 0));
640:                    for (int j = 1; j < numCols; j++)
641:                        array[i][j] = f.map(getElement(i, j));
642:                }
643:                return new ComplexMatrix(array);
644:            }
645:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.