Source Code Cross Referenced for DoubleSparseSquareMatrix.java in  » Science » JSci » JSci » maths » matrices » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » JSci » JSci.maths.matrices 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        package JSci.maths.matrices;
002:
003:        import JSci.GlobalSettings;
004:        import JSci.maths.Mapping;
005:        import JSci.maths.DimensionException;
006:        import JSci.maths.vectors.AbstractDoubleVector;
007:        import JSci.maths.vectors.DoubleVector;
008:
009:        /**
010:         * The DoubleSparseSquareMatrix class provides an object for encapsulating sparse square matrices.
011:         * Uses compressed row storage.
012:         * @version 1.2
013:         * @author Mark Hale
014:         */
015:        public final class DoubleSparseSquareMatrix extends
016:                AbstractDoubleSquareMatrix {
017:            /**
018:             * Matrix elements.
019:             */
020:            private double elements[];
021:            /**
022:             * Sparse indexing data.
023:             * Contains the column positions of each element,
024:             * e.g. <code>colPos[n]</code> is the column position
025:             * of the <code>n</code>th element.
026:             */
027:            private int colPos[];
028:            /**
029:             * Sparse indexing data.
030:             * Contains the indices of the start of each row,
031:             * e.g. <code>rows[i]</code> is the index
032:             * where the <code>i</code>th row starts.
033:             */
034:            private int rows[];
035:
036:            /**
037:             * Constructs an empty matrix.
038:             * @param size the number of rows/columns
039:             */
040:            public DoubleSparseSquareMatrix(final int size) {
041:                super (size);
042:                elements = new double[0];
043:                colPos = new int[0];
044:                rows = new int[numRows + 1];
045:            }
046:
047:            /**
048:             * Constructs a matrix from an array.
049:             * @param array an assigned value
050:             * @exception MatrixDimensionException If the array is not square.
051:             */
052:            public DoubleSparseSquareMatrix(final double array[][]) {
053:                super (array.length);
054:                rows = new int[numRows + 1];
055:                int n = 0;
056:                for (int i = 0; i < numRows; i++) {
057:                    if (array[i].length != array.length)
058:                        throw new MatrixDimensionException(
059:                                "Array is not square.");
060:                    for (int j = 0; j < numCols; j++) {
061:                        if (Math.abs(array[i][j]) > GlobalSettings.ZERO_TOL)
062:                            n++;
063:                    }
064:                }
065:                elements = new double[n];
066:                colPos = new int[n];
067:                n = 0;
068:                for (int i = 0; i < numRows; i++) {
069:                    rows[i] = n;
070:                    for (int j = 0; j < numCols; j++) {
071:                        if (Math.abs(array[i][j]) > GlobalSettings.ZERO_TOL) {
072:                            elements[n] = array[i][j];
073:                            colPos[n] = j;
074:                            n++;
075:                        }
076:                    }
077:                }
078:                rows[numRows] = n;
079:            }
080:
081:            /**
082:             * Compares two double sparse square matrices for equality.
083:             * @param m a double matrix
084:             */
085:            public boolean equals(AbstractDoubleSquareMatrix m, double tol) {
086:                if (numRows == m.numRows && numCols == m.numCols) {
087:                    if (m instanceof  DoubleSparseSquareMatrix) {
088:                        return this .equals((DoubleSparseSquareMatrix) m);
089:                    } else {
090:                        double sumSqr = 0;
091:                        for (int i = 0; i < numRows; i++) {
092:                            for (int j = 0; j < numCols; j++) {
093:                                double delta = getElement(i, j)
094:                                        - m.getElement(i, j);
095:                                sumSqr += delta * delta;
096:                            }
097:                        }
098:                        return (sumSqr <= tol * tol);
099:                    }
100:                } else
101:                    return false;
102:            }
103:
104:            public final boolean equals(DoubleSparseSquareMatrix m) {
105:                return equals(m, GlobalSettings.ZERO_TOL);
106:            }
107:
108:            public boolean equals(DoubleSparseSquareMatrix m, double tol) {
109:                if (numRows == m.numRows && numCols == m.numCols) {
110:                    if (colPos.length != m.colPos.length)
111:                        return false;
112:                    for (int i = 1; i < rows.length; i++) {
113:                        if (rows[i] != m.rows[i])
114:                            return false;
115:                    }
116:                    double sumSqr = 0.0;
117:                    for (int i = 1; i < colPos.length; i++) {
118:                        if (colPos[i] != m.colPos[i])
119:                            return false;
120:                        double delta = elements[i] - m.elements[i];
121:                        sumSqr += delta * delta;
122:                    }
123:                    return (sumSqr <= tol * tol);
124:                } else
125:                    return false;
126:            }
127:
128:            /**
129:             * Returns a string representing this matrix.
130:             */
131:            public String toString() {
132:                final StringBuffer buf = new StringBuffer(numRows * numCols);
133:                for (int i = 0; i < numRows; i++) {
134:                    for (int j = 0; j < numCols; j++) {
135:                        buf.append(getElement(i, j));
136:                        buf.append(' ');
137:                    }
138:                    buf.append('\n');
139:                }
140:                return buf.toString();
141:            }
142:
143:            /**
144:             * Converts this matrix to an integer matrix.
145:             * @return an integer square matrix
146:             */
147:            public AbstractIntegerMatrix toIntegerMatrix() {
148:                final int ans[][] = new int[numRows][numCols];
149:                for (int i = 0; i < numRows; i++) {
150:                    for (int j = 0; j < numCols; j++)
151:                        ans[i][j] = Math.round((float) getElement(i, j));
152:                }
153:                return new IntegerSquareMatrix(ans);
154:            }
155:
156:            /**
157:             * Converts this matrix to a complex matrix.
158:             * @return a complex square matrix
159:             */
160:            public AbstractComplexMatrix toComplexMatrix() {
161:                final double arrayRe[][] = new double[numRows][numCols];
162:                for (int i = 0; i < numRows; i++) {
163:                    for (int j = 0; j < numCols; j++)
164:                        arrayRe[i][j] = getElement(i, j);
165:                }
166:                return new ComplexSquareMatrix(arrayRe,
167:                        new double[numRows][numCols]);
168:            }
169:
170:            /**
171:             * Returns an element of the matrix.
172:             * @param i row index of the element
173:             * @param j column index of the element
174:             * @exception MatrixDimensionException If attempting to access an invalid element.
175:             */
176:            public double getElement(final int i, final int j) {
177:                if (i >= 0 && i < numRows && j >= 0 && j < numCols) {
178:                    for (int k = rows[i]; k < rows[i + 1]; k++) {
179:                        if (colPos[k] == j)
180:                            return elements[k];
181:                    }
182:                    return 0.0;
183:                } else
184:                    throw new MatrixDimensionException(getInvalidElementMsg(i,
185:                            j));
186:            }
187:
188:            /**
189:             * Sets the value of an element of the matrix.
190:             * @param i row index of the element
191:             * @param j column index of the element
192:             * @param x a number
193:             * @exception MatrixDimensionException If attempting to access an invalid element.
194:             */
195:            public void setElement(final int i, final int j, final double x) {
196:                if (i >= 0 && i < numRows && j >= 0 && j < numCols) {
197:                    if (Math.abs(x) <= GlobalSettings.ZERO_TOL)
198:                        return;
199:                    for (int k = rows[i]; k < rows[i + 1]; k++) {
200:                        if (colPos[k] == j) {
201:                            elements[k] = x;
202:                            return;
203:                        }
204:                    }
205:                    final double oldMatrix[] = elements;
206:                    final int oldColPos[] = colPos;
207:                    elements = new double[oldMatrix.length + 1];
208:                    colPos = new int[oldColPos.length + 1];
209:                    System.arraycopy(oldMatrix, 0, elements, 0, rows[i]);
210:                    System.arraycopy(oldColPos, 0, colPos, 0, rows[i]);
211:                    int k;
212:                    for (k = rows[i]; k < rows[i + 1] && oldColPos[k] < j; k++) {
213:                        elements[k] = oldMatrix[k];
214:                        colPos[k] = oldColPos[k];
215:                    }
216:                    elements[k] = x;
217:                    colPos[k] = j;
218:                    System.arraycopy(oldMatrix, k, elements, k + 1,
219:                            oldMatrix.length - k);
220:                    System.arraycopy(oldColPos, k, colPos, k + 1,
221:                            oldColPos.length - k);
222:                    for (k = i + 1; k < rows.length; k++)
223:                        rows[k]++;
224:                } else
225:                    throw new MatrixDimensionException(getInvalidElementMsg(i,
226:                            j));
227:            }
228:
229:            /**
230:             * Returns the determinant.
231:             */
232:            public double det() {
233:                final AbstractDoubleSquareMatrix lu[] = this .luDecompose(null);
234:                double det = lu[1].getElement(0, 0);
235:                for (int i = 1; i < numRows; i++)
236:                    det *= lu[1].getElement(i, i);
237:                return det * LUpivot[numRows];
238:            }
239:
240:            /**
241:             * Returns the trace.
242:             */
243:            public double trace() {
244:                double result = getElement(0, 0);
245:                for (int i = 1; i < numRows; i++)
246:                    result += getElement(i, i);
247:                return result;
248:            }
249:
250:            /**
251:             * Returns the l<sup><img border=0 alt="infinity" src="doc-files/infinity.gif"></sup>-norm.
252:             */
253:            public double infNorm() {
254:                double result = 0.0, tmpResult;
255:                for (int j, i = 0; i < numRows; i++) {
256:                    tmpResult = 0.0;
257:                    for (j = rows[i]; j < rows[i + 1]; j++)
258:                        tmpResult += Math.abs(elements[j]);
259:                    if (tmpResult > result)
260:                        result = tmpResult;
261:                }
262:                return result;
263:            }
264:
265:            /**
266:             * Returns the Frobenius (l<sup>2</sup>) norm.
267:             */
268:            public double frobeniusNorm() {
269:                double result = 0.0;
270:                for (int i = 0; i < colPos.length; i++)
271:                    result += elements[i] * elements[i];
272:                return Math.sqrt(result);
273:            }
274:
275:            //============
276:            // OPERATIONS
277:            //============
278:
279:            // ADDITION
280:
281:            /**
282:             * Returns the addition of this matrix and another.
283:             * @param m a double matrix
284:             * @exception MatrixDimensionException If the matrices are different sizes.
285:             */
286:            public AbstractDoubleSquareMatrix add(
287:                    final AbstractDoubleSquareMatrix m) {
288:                if (m instanceof  DoubleSparseSquareMatrix)
289:                    return add((DoubleSparseSquareMatrix) m);
290:                if (m instanceof  DoubleSquareMatrix)
291:                    return add((DoubleSquareMatrix) m);
292:
293:                if (numRows == m.rows() && numCols == m.columns()) {
294:                    final double array[][] = new double[numRows][numCols];
295:                    for (int i = 0; i < numRows; i++) {
296:                        for (int j = rows[i]; j < rows[i + 1]; j++)
297:                            array[i][colPos[j]] = elements[j];
298:                        array[i][0] += m.getElement(i, 0);
299:                        for (int j = 1; j < numCols; j++)
300:                            array[i][j] += m.getElement(i, j);
301:                    }
302:                    return new DoubleSquareMatrix(array);
303:                } else {
304:                    throw new MatrixDimensionException(
305:                            "Matrices are different sizes.");
306:                }
307:            }
308:
309:            public DoubleSquareMatrix add(final DoubleSquareMatrix m) {
310:                if (numRows == m.numRows && numCols == m.numCols) {
311:                    final double array[][] = new double[numRows][numCols];
312:                    for (int i = 0; i < numRows; i++) {
313:                        for (int j = rows[i]; j < rows[i + 1]; j++)
314:                            array[i][colPos[j]] = elements[j];
315:                        array[i][0] += m.matrix[i][0];
316:                        for (int j = 1; j < numCols; j++)
317:                            array[i][j] += m.matrix[i][j];
318:                    }
319:                    return new DoubleSquareMatrix(array);
320:                } else
321:                    throw new MatrixDimensionException(
322:                            "Matrices are different sizes.");
323:            }
324:
325:            /**
326:             * Returns the addition of this matrix and another.
327:             * @param m a double sparse matrix
328:             * @exception MatrixDimensionException If the matrices are different sizes.
329:             */
330:            public DoubleSparseSquareMatrix add(final DoubleSparseSquareMatrix m) {
331:                if (numRows == m.numRows && numCols == m.numCols) {
332:                    DoubleSparseSquareMatrix ans = new DoubleSparseSquareMatrix(
333:                            numRows);
334:                    for (int i = 0; i < numRows; i++) {
335:                        for (int j = 0; j < numCols; j++)
336:                            ans.setElement(i, j, getElement(i, j)
337:                                    + m.getElement(i, j));
338:                    }
339:                    return ans;
340:                } else
341:                    throw new MatrixDimensionException(
342:                            "Matrices are different sizes.");
343:            }
344:
345:            // SUBTRACTION
346:
347:            /**
348:             * Returns the subtraction of this matrix and another.
349:             * @param m a double matrix
350:             * @exception MatrixDimensionException If the matrices are different sizes.
351:             */
352:            public AbstractDoubleSquareMatrix subtract(
353:                    final AbstractDoubleSquareMatrix m) {
354:                if (m instanceof  DoubleSparseSquareMatrix)
355:                    return subtract((DoubleSparseSquareMatrix) m);
356:                if (m instanceof  DoubleSquareMatrix)
357:                    return subtract((DoubleSquareMatrix) m);
358:
359:                if (numRows == m.rows() && numCols == m.columns()) {
360:                    final double array[][] = new double[numRows][numCols];
361:                    for (int i = 0; i < numRows; i++) {
362:                        for (int j = rows[i]; j < rows[i + 1]; j++)
363:                            array[i][colPos[j]] = elements[j];
364:                        array[i][0] -= m.getElement(i, 0);
365:                        for (int j = 1; j < numCols; j++)
366:                            array[i][j] -= m.getElement(i, j);
367:                    }
368:                    return new DoubleSquareMatrix(array);
369:                } else {
370:                    throw new MatrixDimensionException(
371:                            "Matrices are different sizes.");
372:                }
373:            }
374:
375:            public DoubleSquareMatrix subtract(final DoubleSquareMatrix m) {
376:                if (numRows == m.numRows && numCols == m.numCols) {
377:                    final double array[][] = new double[numRows][numCols];
378:                    for (int i = 0; i < numRows; i++) {
379:                        for (int j = rows[i]; j < rows[i + 1]; j++)
380:                            array[i][colPos[j]] = elements[j];
381:                        array[i][0] -= m.matrix[i][0];
382:                        for (int j = 1; j < numCols; j++)
383:                            array[i][j] -= m.matrix[i][j];
384:                    }
385:                    return new DoubleSquareMatrix(array);
386:                } else
387:                    throw new MatrixDimensionException(
388:                            "Matrices are different sizes.");
389:            }
390:
391:            /**
392:             * Returns the addition of this matrix and another.
393:             * @param m a double sparse matrix
394:             * @exception MatrixDimensionException If the matrices are different sizes.
395:             */
396:            public DoubleSparseSquareMatrix subtract(
397:                    final DoubleSparseSquareMatrix m) {
398:                if (numRows == m.numRows && numCols == m.numCols) {
399:                    DoubleSparseSquareMatrix ans = new DoubleSparseSquareMatrix(
400:                            numRows);
401:                    for (int i = 0; i < numRows; i++) {
402:                        for (int j = 0; j < numCols; j++)
403:                            ans.setElement(i, j, getElement(i, j)
404:                                    - m.getElement(i, j));
405:                    }
406:                    return ans;
407:                } else
408:                    throw new MatrixDimensionException(
409:                            "Matrices are different sizes.");
410:            }
411:
412:            // SCALAR MULTIPLICATION
413:
414:            /**
415:             * Returns the multiplication of this matrix by a scalar.
416:             * @param x a double
417:             * @return a double sparse matrix
418:             */
419:            public AbstractDoubleMatrix scalarMultiply(final double x) {
420:                final DoubleSparseSquareMatrix ans = new DoubleSparseSquareMatrix(
421:                        numRows);
422:                ans.elements = new double[elements.length];
423:                ans.colPos = new int[colPos.length];
424:                System.arraycopy(colPos, 0, ans.colPos, 0, colPos.length);
425:                System.arraycopy(rows, 0, ans.rows, 0, rows.length);
426:                for (int i = 0; i < colPos.length; i++)
427:                    ans.elements[i] = x * elements[i];
428:                return ans;
429:            }
430:
431:            public AbstractDoubleMatrix scalarDivide(final double x) {
432:                final DoubleSparseSquareMatrix ans = new DoubleSparseSquareMatrix(
433:                        numRows);
434:                ans.elements = new double[elements.length];
435:                ans.colPos = new int[colPos.length];
436:                System.arraycopy(colPos, 0, ans.colPos, 0, colPos.length);
437:                System.arraycopy(rows, 0, ans.rows, 0, rows.length);
438:                for (int i = 0; i < colPos.length; i++)
439:                    ans.elements[i] = elements[i] / x;
440:                return ans;
441:            }
442:
443:            // SCALAR PRODUCT
444:
445:            /**
446:             * Returns the scalar product of this matrix and another.
447:             * @param m a double matrix.
448:             * @exception MatrixDimensionException If the matrices are different sizes.
449:             */
450:            public double scalarProduct(final AbstractDoubleSquareMatrix m) {
451:                if (m instanceof  DoubleSquareMatrix)
452:                    return scalarProduct((DoubleSquareMatrix) m);
453:
454:                if (numRows == m.numRows && numCols == m.numCols) {
455:                    double ans = 0.0;
456:                    for (int i = 0; i < numRows; i++) {
457:                        for (int j = rows[i]; j < rows[i + 1]; j++)
458:                            ans += elements[j] * m.getElement(i, colPos[j]);
459:                    }
460:                    return ans;
461:                } else
462:                    throw new MatrixDimensionException(
463:                            "Matrices are different sizes.");
464:            }
465:
466:            public double scalarProduct(final DoubleSquareMatrix m) {
467:                if (numRows == m.numRows && numCols == m.numCols) {
468:                    double ans = 0.0;
469:                    for (int i = 0; i < numRows; i++) {
470:                        for (int j = rows[i]; j < rows[i + 1]; j++)
471:                            ans += elements[j] * m.matrix[i][colPos[j]];
472:                    }
473:                    return ans;
474:                } else
475:                    throw new MatrixDimensionException(
476:                            "Matrices are different sizes.");
477:            }
478:
479:            // MATRIX MULTIPLICATION
480:
481:            /**
482:             * Returns the multiplication of a vector by this matrix.
483:             * @param v a double vector
484:             * @exception DimensionException If the matrix and vector are incompatible.
485:             */
486:            public AbstractDoubleVector multiply(final AbstractDoubleVector v) {
487:                if (numCols == v.dimension()) {
488:                    final double array[] = new double[numRows];
489:                    for (int i = 0; i < numRows; i++) {
490:                        for (int j = rows[i]; j < rows[i + 1]; j++)
491:                            array[i] += elements[j] * v.getComponent(colPos[j]);
492:                    }
493:                    return new DoubleVector(array);
494:                } else
495:                    throw new DimensionException(
496:                            "Matrix and vector are incompatible.");
497:            }
498:
499:            /**
500:             * Returns the multiplication of this matrix and another.
501:             * @param m a double matrix
502:             * @exception MatrixDimensionException If the matrices are incompatible.
503:             */
504:            public AbstractDoubleSquareMatrix multiply(
505:                    final AbstractDoubleSquareMatrix m) {
506:                if (m instanceof  DoubleSparseSquareMatrix)
507:                    return multiply((DoubleSparseSquareMatrix) m);
508:                if (m instanceof  DoubleSquareMatrix)
509:                    return multiply((DoubleSquareMatrix) m);
510:
511:                if (numCols == m.numRows) {
512:                    final double array[][] = new double[numRows][m.numCols];
513:                    for (int j = 0; j < numRows; j++) {
514:                        for (int k = 0; k < m.numCols; k++) {
515:                            for (int n = rows[j]; n < rows[j + 1]; n++)
516:                                array[j][k] += elements[n]
517:                                        * m.getElement(colPos[n], k);
518:                        }
519:                    }
520:                    return new DoubleSquareMatrix(array);
521:                } else
522:                    throw new MatrixDimensionException("Incompatible matrices.");
523:            }
524:
525:            public DoubleSquareMatrix multiply(final DoubleSquareMatrix m) {
526:                if (numCols == m.numRows) {
527:                    final double array[][] = new double[numRows][m.numCols];
528:                    for (int j = 0; j < numRows; j++) {
529:                        for (int k = 0; k < m.numCols; k++) {
530:                            for (int n = rows[j]; n < rows[j + 1]; n++)
531:                                array[j][k] += elements[n]
532:                                        * m.matrix[colPos[n]][k];
533:                        }
534:                    }
535:                    return new DoubleSquareMatrix(array);
536:                } else
537:                    throw new MatrixDimensionException("Incompatible matrices.");
538:            }
539:
540:            /**
541:             * Returns the multiplication of this matrix and another.
542:             * @param m a double sparse matrix
543:             * @exception MatrixDimensionException If the matrices are incompatible.
544:             */
545:            public DoubleSparseSquareMatrix multiply(
546:                    final DoubleSparseSquareMatrix m) {
547:                if (numCols == m.numRows) {
548:                    DoubleSparseSquareMatrix ans = new DoubleSparseSquareMatrix(
549:                            numRows);
550:                    for (int j = 0; j < numRows; j++) {
551:                        for (int k = 0; k < numCols; k++) {
552:                            double tmp = 0.0;
553:                            for (int n = rows[j]; n < rows[j + 1]; n++)
554:                                tmp += elements[n] * m.getElement(colPos[n], k);
555:                            ans.setElement(j, k, tmp);
556:                        }
557:                    }
558:                    return ans;
559:                } else
560:                    throw new MatrixDimensionException("Incompatible matrices.");
561:            }
562:
563:            // TRANSPOSE
564:
565:            /**
566:             * Returns the transpose of this matrix.
567:             * @return a double sparse matrix
568:             */
569:            public Matrix transpose() {
570:                final DoubleSparseSquareMatrix ans = new DoubleSparseSquareMatrix(
571:                        numRows);
572:                for (int i = 0; i < numRows; i++) {
573:                    ans.setElement(0, i, getElement(i, 0));
574:                    for (int j = 1; j < numCols; j++)
575:                        ans.setElement(j, i, getElement(i, j));
576:                }
577:                return ans;
578:            }
579:
580:            // LU DECOMPOSITION
581:
582:            /**
583:             * Returns the LU decomposition of this matrix.
584:             * @param pivot an empty array of length <code>rows()+1</code>
585:             * to hold the pivot information (null if not interested)
586:             * @return an array with [0] containing the L-matrix
587:             * and [1] containing the U-matrix.
588:             */
589:            public AbstractDoubleSquareMatrix[] luDecompose(int pivot[]) {
590:                if (LU != null) {
591:                    if (pivot != null)
592:                        System.arraycopy(LUpivot, 0, pivot, 0, pivot.length);
593:                    return LU;
594:                }
595:                final double arrayL[][] = new double[numRows][numCols];
596:                final double arrayU[][] = new double[numRows][numCols];
597:                if (pivot == null)
598:                    pivot = new int[numRows + 1];
599:                for (int i = 0; i < numRows; i++)
600:                    pivot[i] = i;
601:                pivot[numRows] = 1;
602:                // LU decomposition to arrayU
603:                for (int j = 0; j < numCols; j++) {
604:                    for (int i = 0; i < j; i++) {
605:                        double tmp = getElement(pivot[i], j);
606:                        for (int k = 0; k < i; k++)
607:                            tmp -= arrayU[i][k] * arrayU[k][j];
608:                        arrayU[i][j] = tmp;
609:                    }
610:                    double max = 0.0;
611:                    int pivotrow = j;
612:                    for (int i = j; i < numRows; i++) {
613:                        double tmp = getElement(pivot[i], j);
614:                        for (int k = 0; k < j; k++)
615:                            tmp -= arrayU[i][k] * arrayU[k][j];
616:                        arrayU[i][j] = tmp;
617:                        // while we're here search for a pivot for arrayU[j][j]
618:                        tmp = Math.abs(tmp);
619:                        if (tmp > max) {
620:                            max = tmp;
621:                            pivotrow = i;
622:                        }
623:                    }
624:                    // swap row j with pivotrow
625:                    if (pivotrow != j) {
626:                        double[] tmprow = arrayU[j];
627:                        arrayU[j] = arrayU[pivotrow];
628:                        arrayU[pivotrow] = tmprow;
629:                        int k = pivot[j];
630:                        pivot[j] = pivot[pivotrow];
631:                        pivot[pivotrow] = k;
632:                        // update parity
633:                        pivot[numRows] = -pivot[numRows];
634:                    }
635:                    // divide by pivot
636:                    for (int i = j + 1; i < numRows; i++)
637:                        arrayU[i][j] /= arrayU[j][j];
638:                }
639:                // move lower triangular part to arrayL
640:                for (int j = 0; j < numCols; j++) {
641:                    arrayL[j][j] = 1.0;
642:                    for (int i = j + 1; i < numRows; i++) {
643:                        arrayL[i][j] = arrayU[i][j];
644:                        arrayU[i][j] = 0.0;
645:                    }
646:                }
647:                LU = new AbstractDoubleSquareMatrix[2];
648:                LU[0] = new DoubleSquareMatrix(arrayL);
649:                LU[1] = new DoubleSquareMatrix(arrayU);
650:                LUpivot = new int[pivot.length];
651:                System.arraycopy(pivot, 0, LUpivot, 0, pivot.length);
652:                return LU;
653:            }
654:
655:            /**
656:             * Returns the LU decomposition of this matrix.
657:             * Warning: no pivoting.
658:             * @return an array with [0] containing the L-matrix
659:             * and [1] containing the U-matrix.
660:             * @jsci.planetmath LUDecomposition
661:             */
662:            public AbstractDoubleSquareMatrix[] luDecompose() {
663:                final double arrayL[][] = new double[numRows][numCols];
664:                final double arrayU[][] = new double[numRows][numCols];
665:                // LU decomposition to arrayU
666:                for (int j = 0; j < numCols; j++) {
667:                    for (int i = 0; i < j; i++) {
668:                        double tmp = getElement(i, j);
669:                        for (int k = 0; k < i; k++)
670:                            tmp -= arrayU[i][k] * arrayU[k][j];
671:                        arrayU[i][j] = tmp;
672:                    }
673:                    for (int i = j; i < numRows; i++) {
674:                        double tmp = getElement(i, j);
675:                        for (int k = 0; k < j; k++)
676:                            tmp -= arrayU[i][k] * arrayU[k][j];
677:                        arrayU[i][j] = tmp;
678:                    }
679:                    // divide
680:                    for (int i = j + 1; i < numRows; i++)
681:                        arrayU[i][j] /= arrayU[j][j];
682:                }
683:                // move lower triangular part to arrayL
684:                for (int j = 0; j < numCols; j++) {
685:                    arrayL[j][j] = 1.0;
686:                    for (int i = j + 1; i < numRows; i++) {
687:                        arrayL[i][j] = arrayU[i][j];
688:                        arrayU[i][j] = 0.0;
689:                    }
690:                }
691:                AbstractDoubleSquareMatrix[] lu = new AbstractDoubleSquareMatrix[2];
692:                lu[0] = new DoubleSquareMatrix(arrayL);
693:                lu[1] = new DoubleSquareMatrix(arrayU);
694:                return lu;
695:            }
696:
697:            // CHOLESKY DECOMPOSITION
698:
699:            /**
700:             * Returns the Cholesky decomposition of this matrix.
701:             * Matrix must be symmetric and positive definite.
702:             * @return an array with [0] containing the L-matrix and [1] containing the U-matrix.
703:             */
704:            public AbstractDoubleSquareMatrix[] choleskyDecompose() {
705:                final double arrayL[][] = new double[numRows][numCols];
706:                final double arrayU[][] = new double[numRows][numCols];
707:                arrayL[0][0] = arrayU[0][0] = Math.sqrt(getElement(0, 0));
708:                for (int i = 1; i < numRows; i++)
709:                    arrayL[i][0] = arrayU[0][i] = getElement(i, 0)
710:                            / arrayL[0][0];
711:                for (int j = 1; j < numCols; j++) {
712:                    double tmp = getElement(j, j);
713:                    for (int i = 0; i < j; i++)
714:                        tmp -= arrayL[j][i] * arrayL[j][i];
715:                    arrayL[j][j] = arrayU[j][j] = Math.sqrt(tmp);
716:                    for (int i = j + 1; i < numRows; i++) {
717:                        tmp = getElement(i, j);
718:                        for (int k = 0; k < i; k++)
719:                            tmp -= arrayL[j][k] * arrayU[k][i];
720:                        arrayL[i][j] = arrayU[j][i] = tmp / arrayU[j][j];
721:                    }
722:                }
723:                final AbstractDoubleSquareMatrix lu[] = new AbstractDoubleSquareMatrix[2];
724:                lu[0] = new DoubleSquareMatrix(arrayL);
725:                lu[1] = new DoubleSquareMatrix(arrayU);
726:                return lu;
727:            }
728:
729:            // MAP ELEMENTS
730:
731:            /**
732:             * Applies a function on all the matrix elements.
733:             * @param f a user-defined function
734:             * @return a double sparse matrix
735:             */
736:            public AbstractDoubleMatrix mapElements(final Mapping f) {
737:                final DoubleSparseSquareMatrix ans = new DoubleSparseSquareMatrix(
738:                        numRows);
739:                ans.elements = new double[elements.length];
740:                ans.colPos = new int[colPos.length];
741:                System.arraycopy(colPos, 0, ans.colPos, 0, colPos.length);
742:                System.arraycopy(rows, 0, ans.rows, 0, rows.length);
743:                for (int i = 0; i < colPos.length; i++)
744:                    ans.elements[i] = f.map(elements[i]);
745:                return ans;
746:            }
747:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.