Source Code Cross Referenced for ADNode.java in  » Science » weka » weka » classifiers » bayes » net » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » weka » weka.classifiers.bayes.net 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * This program is free software; you can redistribute it and/or modify
003:         * it under the terms of the GNU General Public License as published by
004:         * the Free Software Foundation; either version 2 of the License, or
005:         * (at your option) any later version.
006:         * 
007:         * This program is distributed in the hope that it will be useful,
008:         * but WITHOUT ANY WARRANTY; without even the implied warranty of
009:         * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
010:         * GNU General Public License for more details.
011:         * 
012:         * You should have received a copy of the GNU General Public License
013:         * along with this program; if not, write to the Free Software
014:         * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
015:         */
016:
017:        /*
018:         * ADNode.java
019:         * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand
020:         * 
021:         */
022:
023:        package weka.classifiers.bayes.net;
024:
025:        import weka.core.FastVector;
026:        import weka.core.Instance;
027:        import weka.core.Instances;
028:        import weka.core.TechnicalInformation;
029:        import weka.core.TechnicalInformation.Type;
030:        import weka.core.TechnicalInformation.Field;
031:        import weka.core.TechnicalInformationHandler;
032:
033:        import java.io.FileReader;
034:        import java.io.Serializable;
035:
036:        /**
037:         * The ADNode class implements the ADTree datastructure which increases
038:         * the speed with which sub-contingency tables can be constructed from
039:         * a data set in an Instances object. For details, see: <p/>
040:         *
041:         <!-- technical-plaintext-start -->
042:         * Andrew W. Moore, Mary S. Lee (1998). Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets. Journal of Artificial Intelligence Research. 8:67-91.
043:         <!-- technical-plaintext-end -->
044:         * <p/>
045:         *
046:         <!-- technical-bibtex-start -->
047:         * BibTeX:
048:         * <pre>
049:         * &#64;article{Moore1998,
050:         *    author = {Andrew W. Moore and Mary S. Lee},
051:         *    journal = {Journal of Artificial Intelligence Research},
052:         *    pages = {67-91},
053:         *    title = {Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets},
054:         *    volume = {8},
055:         *    year = {1998}
056:         * }
057:         * </pre>
058:         * <p/>
059:         <!-- technical-bibtex-end -->
060:         *
061:         * @author Remco Bouckaert (rrb@xm.co.nz)
062:         * @version $Revision: 1.6 $
063:         */
064:        public class ADNode implements  Serializable,
065:                TechnicalInformationHandler {
066:
067:            /** for serialization */
068:            static final long serialVersionUID = 397409728366910204L;
069:
070:            final static int MIN_RECORD_SIZE = 0;
071:
072:            /** list of VaryNode children **/
073:            public VaryNode[] m_VaryNodes;
074:            /** list of Instance children (either m_Instances or m_VaryNodes is instantiated) **/
075:            public Instance[] m_Instances;
076:
077:            /** count **/
078:            public int m_nCount;
079:
080:            /** first node in VaryNode array **/
081:            public int m_nStartNode;
082:
083:            /** Creates new ADNode */
084:            public ADNode() {
085:            }
086:
087:            /**
088:             * Returns an instance of a TechnicalInformation object, containing 
089:             * detailed information about the technical background of this class,
090:             * e.g., paper reference or book this class is based on.
091:             * 
092:             * @return the technical information about this class
093:             */
094:            public TechnicalInformation getTechnicalInformation() {
095:                TechnicalInformation result;
096:
097:                result = new TechnicalInformation(Type.ARTICLE);
098:                result
099:                        .setValue(Field.AUTHOR,
100:                                "Andrew W. Moore and Mary S. Lee");
101:                result.setValue(Field.YEAR, "1998");
102:                result
103:                        .setValue(
104:                                Field.TITLE,
105:                                "Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets");
106:                result.setValue(Field.JOURNAL,
107:                        "Journal of Artificial Intelligence Research");
108:                result.setValue(Field.VOLUME, "8");
109:                result.setValue(Field.PAGES, "67-91");
110:
111:                return result;
112:            }
113:
114:            /** create sub tree
115:             * @param iNode index of the lowest node in the tree
116:             * @param nRecords set of records in instances to be considered
117:             * @param instances data set
118:             * @return VaryNode representing part of an ADTree
119:             **/
120:            public static VaryNode makeVaryNode(int iNode, FastVector nRecords,
121:                    Instances instances) {
122:                VaryNode _VaryNode = new VaryNode(iNode);
123:                int nValues = instances.attribute(iNode).numValues();
124:
125:                // reserve memory and initialize
126:                FastVector[] nChildRecords = new FastVector[nValues];
127:                for (int iChild = 0; iChild < nValues; iChild++) {
128:                    nChildRecords[iChild] = new FastVector();
129:                }
130:                // divide the records among children
131:                for (int iRecord = 0; iRecord < nRecords.size(); iRecord++) {
132:                    int iInstance = ((Integer) nRecords.elementAt(iRecord))
133:                            .intValue();
134:                    nChildRecords[(int) instances.instance(iInstance).value(
135:                            iNode)].addElement(new Integer(iInstance));
136:                }
137:
138:                // find most common value
139:                int nCount = nChildRecords[0].size();
140:                int nMCV = 0;
141:                for (int iChild = 1; iChild < nValues; iChild++) {
142:                    if (nChildRecords[iChild].size() > nCount) {
143:                        nCount = nChildRecords[iChild].size();
144:                        nMCV = iChild;
145:                    }
146:                }
147:                _VaryNode.m_nMCV = nMCV;
148:
149:                // determine child nodes
150:                _VaryNode.m_ADNodes = new ADNode[nValues];
151:                for (int iChild = 0; iChild < nValues; iChild++) {
152:                    if (iChild == nMCV || nChildRecords[iChild].size() == 0) {
153:                        _VaryNode.m_ADNodes[iChild] = null;
154:                    } else {
155:                        _VaryNode.m_ADNodes[iChild] = makeADTree(iNode + 1,
156:                                nChildRecords[iChild], instances);
157:                    }
158:                }
159:                return _VaryNode;
160:            } // MakeVaryNode
161:
162:            /** 
163:             * create sub tree
164:             * 
165:             * @param iNode index of the lowest node in the tree
166:             * @param nRecords set of records in instances to be considered
167:             * @param instances data set
168:             * @return ADNode representing an ADTree
169:             */
170:            public static ADNode makeADTree(int iNode, FastVector nRecords,
171:                    Instances instances) {
172:                ADNode _ADNode = new ADNode();
173:                _ADNode.m_nCount = nRecords.size();
174:                _ADNode.m_nStartNode = iNode;
175:                if (nRecords.size() < MIN_RECORD_SIZE) {
176:                    _ADNode.m_Instances = new Instance[nRecords.size()];
177:                    for (int iInstance = 0; iInstance < nRecords.size(); iInstance++) {
178:                        _ADNode.m_Instances[iInstance] = instances
179:                                .instance(((Integer) nRecords
180:                                        .elementAt(iInstance)).intValue());
181:                    }
182:                } else {
183:                    _ADNode.m_VaryNodes = new VaryNode[instances
184:                            .numAttributes()
185:                            - iNode];
186:                    for (int iNode2 = iNode; iNode2 < instances.numAttributes(); iNode2++) {
187:                        _ADNode.m_VaryNodes[iNode2 - iNode] = makeVaryNode(
188:                                iNode2, nRecords, instances);
189:                    }
190:                }
191:                return _ADNode;
192:            } // MakeADTree
193:
194:            /** 
195:             * create AD tree from set of instances
196:             * 
197:             * @param instances data set
198:             * @return ADNode representing an ADTree
199:             */
200:            public static ADNode makeADTree(Instances instances) {
201:                FastVector nRecords = new FastVector(instances.numInstances());
202:                for (int iRecord = 0; iRecord < instances.numInstances(); iRecord++) {
203:                    nRecords.addElement(new Integer(iRecord));
204:                }
205:                return makeADTree(0, nRecords, instances);
206:            } // MakeADTree
207:
208:            /** 
209:             * get counts for specific instantiation of a set of nodes
210:             * 
211:             * @param nCounts - array for storing counts
212:             * @param nNodes - array of node indexes 
213:             * @param nOffsets - offset for nodes in nNodes in nCounts
214:             * @param iNode - index into nNode indicating current node
215:             * @param iOffset - Offset into nCounts due to nodes below iNode
216:             * @param bSubstract - indicate whether counts should be added or substracted
217:             */
218:            public void getCounts(int[] nCounts, int[] nNodes, int[] nOffsets,
219:                    int iNode, int iOffset, boolean bSubstract) {
220:                //for (int iNode2 = 0; iNode2 < nCounts.length; iNode2++) {
221:                //   System.out.print(nCounts[iNode2] + " ");
222:                //}
223:                //System.out.println();
224:                if (iNode >= nNodes.length) {
225:                    if (bSubstract) {
226:                        nCounts[iOffset] -= m_nCount;
227:                    } else {
228:                        nCounts[iOffset] += m_nCount;
229:                    }
230:                    return;
231:                } else {
232:                    if (m_VaryNodes != null) {
233:                        m_VaryNodes[nNodes[iNode] - m_nStartNode].getCounts(
234:                                nCounts, nNodes, nOffsets, iNode, iOffset,
235:                                this , bSubstract);
236:                    } else {
237:                        for (int iInstance = 0; iInstance < m_Instances.length; iInstance++) {
238:                            int iOffset2 = iOffset;
239:                            Instance instance = m_Instances[iInstance];
240:                            for (int iNode2 = iNode; iNode2 < nNodes.length; iNode2++) {
241:                                iOffset2 = iOffset2 + nOffsets[iNode2]
242:                                        * (int) instance.value(nNodes[iNode2]);
243:                            }
244:                            if (bSubstract) {
245:                                nCounts[iOffset2]--;
246:                            } else {
247:                                nCounts[iOffset2]++;
248:                            }
249:                        }
250:                    }
251:                }
252:            } // getCounts
253:
254:            /** 
255:             * print is used for debugging only and shows the ADTree in ASCII graphics
256:             */
257:            public void print() {
258:                String sTab = new String();
259:                for (int i = 0; i < m_nStartNode; i++) {
260:                    sTab = sTab + "  ";
261:                }
262:                System.out.println(sTab + "Count = " + m_nCount);
263:                if (m_VaryNodes != null) {
264:                    for (int iNode = 0; iNode < m_VaryNodes.length; iNode++) {
265:                        System.out.println(sTab + "Node "
266:                                + (iNode + m_nStartNode));
267:                        m_VaryNodes[iNode].print(sTab);
268:                    }
269:                } else {
270:                    System.out.println(m_Instances);
271:                }
272:            }
273:
274:            /**
275:             * for testing only
276:             * 
277:             * @param argv the commandline options
278:             */
279:            public static void main(String[] argv) {
280:                try {
281:                    Instances instances = new Instances(new FileReader(
282:                            "\\iris.2.arff"));
283:                    ADNode ADTree = ADNode.makeADTree(instances);
284:                    int[] nCounts = new int[12];
285:                    int[] nNodes = new int[3];
286:                    int[] nOffsets = new int[3];
287:                    nNodes[0] = 0;
288:                    nNodes[1] = 3;
289:                    nNodes[2] = 4;
290:                    nOffsets[0] = 2;
291:                    nOffsets[1] = 1;
292:                    nOffsets[2] = 4;
293:                    ADTree.print();
294:                    ADTree.getCounts(nCounts, nNodes, nOffsets, 0, 0, false);
295:
296:                } catch (Throwable t) {
297:                    t.printStackTrace();
298:                }
299:            } // main
300:
301:        } // class ADNode
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.