Source Code Cross Referenced for DefaultComplexImpl.java in  » Science » jmatlab » org » jmatlab » linalg » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » jmatlab » org.jmatlab.linalg 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * Created on Mar 29, 2004
003:         *
004:         */
005:        package org.jmatlab.linalg;
006:
007:        import java.io.Serializable;
008:
009:        import org.jmatlab.toolbox.*;
010:        import org.jmatlab.util.FormatNumber;
011:
012:        /**
013:         * @author Ali
014:         *
015:         */
016:        public class DefaultComplexImpl implements  IComplex, Serializable {
017:
018:            private double real = 0.0;
019:            private double imag = 0.0;
020:
021:            public DefaultComplexImpl() {
022:                this .real = 0.0;
023:                this .imag = 0.0;
024:            }
025:
026:            public DefaultComplexImpl(double d) {
027:                this .real = d;
028:            }
029:
030:            public DefaultComplexImpl(double real, double imag) {
031:                this .real = real;
032:                this .imag = imag;
033:            }
034:
035:            public DefaultComplexImpl(IComplex complex) {
036:                this .real = complex.getReal();
037:                this .imag = complex.getImag();
038:            }
039:
040:            public double getImag() {
041:                return imag;
042:            }
043:
044:            public void setImag(double d) {
045:                this .imag = d;
046:            }
047:
048:            public double getReal() {
049:                return real;
050:            }
051:
052:            public void setReal(double d) {
053:                this .real = d;
054:            }
055:
056:            public boolean equals(IComplex complex) {
057:                if (isNAN() && complex.isNAN()) {
058:                    return true;
059:                } else {
060:                    return (real == complex.getReal() && imag == complex
061:                            .getImag());
062:                }
063:            }
064:
065:            public boolean equals(Object obj) {
066:                if (obj == null) {
067:                    return false;
068:                } else if (obj instanceof  IComplex) {
069:                    return (equals((IComplex) obj));
070:                } else {
071:                    return false;
072:                }
073:            }
074:
075:            public boolean isNAN() {
076:                return (Double.isNaN(real) || Double.isNaN(imag));
077:            }
078:
079:            public IComplex minus(IComplex complex) {
080:                return new DefaultComplexImpl(real - complex.getReal(), imag
081:                        - complex.getImag());
082:            }
083:
084:            public IComplex minus(double d) {
085:                return new DefaultComplexImpl(real - d, imag);
086:            }
087:
088:            public IComplex minusReverse(double d) {
089:                return new DefaultComplexImpl(d - real, -1 * imag);
090:            }
091:
092:            private static double copysign(double a, double b) {
093:                double abs = Math.abs(a);
094:                return ((b < 0) ? -abs : abs);
095:            }
096:
097:            private static boolean isFinite(double x) {
098:                return !(Double.isInfinite(x) || Double.isNaN(x));
099:            }
100:
101:            private static IComplex divideBy(IComplex x, IComplex y) {
102:                double a = x.getReal();
103:                double b = x.getImag();
104:                double c = y.getReal();
105:                double d = y.getImag();
106:
107:                double scale = Math.max(Math.abs(c), Math.abs(d));
108:                boolean isScaleFinite = isFinite(scale);
109:                if (isScaleFinite) {
110:                    c /= scale;
111:                    d /= scale;
112:                }
113:
114:                double den = c * c + d * d;
115:                IComplex z = new DefaultComplexImpl((a * c + b * d) / den, (b
116:                        * c - a * d)
117:                        / den);
118:
119:                if (isScaleFinite) {
120:                    z.setReal(z.getReal() / scale);
121:                    z.setImag(z.getImag() / scale);
122:                }
123:
124:                // Recover infinities and zeros computed as NaN+iNaN.
125:                if (Double.isNaN(z.getReal()) && Double.isNaN(z.getImag())) {
126:                    if (den == 0.0 && (!Double.isNaN(a) || !Double.isNaN(b))) {
127:                        double s = copysign(Double.POSITIVE_INFINITY, c);
128:                        z.setReal(s * a);
129:                        z.setImag(s * b);
130:
131:                    } else if ((Double.isInfinite(a) || Double.isInfinite(b))
132:                            && isFinite(c) && isFinite(d)) {
133:                        a = copysign(Double.isInfinite(a) ? 1.0 : 0.0, a);
134:                        b = copysign(Double.isInfinite(b) ? 1.0 : 0.0, b);
135:                        z.setReal(Double.POSITIVE_INFINITY * (a * c + b * d));
136:                        z.setImag(Double.POSITIVE_INFINITY * (b * c - a * d));
137:
138:                    } else if (Double.isInfinite(scale) && isFinite(a)
139:                            && isFinite(b)) {
140:                        c = copysign(Double.isInfinite(c) ? 1.0 : 0.0, c);
141:                        d = copysign(Double.isInfinite(d) ? 1.0 : 0.0, d);
142:                        z.setReal(0.0 * (a * c + b * d));
143:                        z.setImag(0.0 * (b * c - a * d));
144:                    }
145:                }
146:                return z;
147:            }
148:
149:            public IComplex dividedBy(IComplex complex) {
150:                return divideBy(this , complex);
151:            }
152:
153:            private static IComplex divideBy(IComplex x, double y) {
154:                return new DefaultComplexImpl(x.getReal() / y, x.getImag() / y);
155:            }
156:
157:            public IComplex dividedBy(double d) {
158:                return divideBy(this , d);
159:            }
160:
161:            public IComplex dividedByReverse(double d) {
162:                double den, t;
163:                IComplex z;
164:                if (Math.abs(real) > Math.abs(imag)) {
165:                    t = imag / real;
166:                    den = real + imag * t;
167:                    z = new DefaultComplexImpl(d / den, -d * t / den);
168:                } else {
169:                    t = real / imag;
170:                    den = imag + real * t;
171:                    z = new DefaultComplexImpl(d * t / den, -d / den);
172:                }
173:                return z;
174:            }
175:
176:            public IComplex plus(IComplex complex) {
177:                return new DefaultComplexImpl(real + complex.getReal(), imag
178:                        + complex.getImag());
179:            }
180:
181:            public IComplex plus(double d) {
182:                return new DefaultComplexImpl(real + d, imag);
183:            }
184:
185:            private static void timesNaN(IComplex x, IComplex y, IComplex t) {
186:                boolean recalc = false;
187:                double a = x.getReal();
188:                double b = x.getImag();
189:                double c = y.getReal();
190:                double d = y.getImag();
191:
192:                if (Double.isInfinite(a) || Double.isInfinite(b)) {
193:                    // x is infinite
194:                    a = copysign(Double.isInfinite(a) ? 1.0 : 0.0, a);
195:                    b = copysign(Double.isInfinite(b) ? 1.0 : 0.0, b);
196:                    if (Double.isNaN(c))
197:                        c = copysign(0.0, c);
198:                    if (Double.isNaN(d))
199:                        d = copysign(0.0, d);
200:                    recalc = true;
201:                }
202:
203:                if (Double.isInfinite(c) || Double.isInfinite(d)) {
204:                    // x is infinite
205:                    a = copysign(Double.isInfinite(c) ? 1.0 : 0.0, c);
206:                    b = copysign(Double.isInfinite(d) ? 1.0 : 0.0, d);
207:                    if (Double.isNaN(a))
208:                        a = copysign(0.0, a);
209:                    if (Double.isNaN(b))
210:                        b = copysign(0.0, b);
211:                    recalc = true;
212:                }
213:
214:                if (!recalc) {
215:                    if (Double.isInfinite(a * c) || Double.isInfinite(b * d)
216:                            || Double.isInfinite(a * d)
217:                            || Double.isInfinite(b * c)) {
218:                        // Change all NaNs to 0
219:                        if (Double.isNaN(a))
220:                            a = copysign(0.0, a);
221:                        if (Double.isNaN(b))
222:                            b = copysign(0.0, b);
223:                        if (Double.isNaN(c))
224:                            c = copysign(0.0, c);
225:                        if (Double.isNaN(d))
226:                            d = copysign(0.0, d);
227:                        recalc = true;
228:                    }
229:                }
230:
231:                if (recalc) {
232:                    t.setReal(Double.POSITIVE_INFINITY * (a * c - b * d));
233:                    t.setImag(Double.POSITIVE_INFINITY * (a * d + b * c));
234:                }
235:            }
236:
237:            public static IComplex times(IComplex x, IComplex y) {
238:                IComplex t = new DefaultComplexImpl(x.getReal() * y.getReal()
239:                        - x.getImag() * y.getImag(), x.getReal() * y.getImag()
240:                        + x.getImag() * y.getReal());
241:                if (Double.isNaN(t.getReal()) && Double.isNaN(t.getImag()))
242:                    timesNaN(x, y, t);
243:                return t;
244:            }
245:
246:            public IComplex times(IComplex complex) {
247:                return times(this , complex);
248:            }
249:
250:            public IComplex times(double d) {
251:                return new DefaultComplexImpl(real * d, imag * d);
252:            }
253:
254:            public String toString() {
255:                if (imag == 0.0) {
256:                    if (Double.isInfinite(real)) {
257:                        return "Inf";
258:                    } else if (Double.isInfinite(-real)) {
259:                        return "-Inf";
260:                    } else if (Double.isNaN(real)) {
261:                        return "NaN";
262:                    }
263:                    return FormatNumber.format(real);
264:                }
265:
266:                String iota = "i";
267:
268:                String sign = (imag < 0.0) ? " - " : " + ";
269:                String re = FormatNumber.format(real);
270:                if (Double.isInfinite(real)) {
271:                    re = "Inf";
272:                } else if (Double.isInfinite(-real)) {
273:                    re = "-Inf";
274:                } else if (Double.isNaN(real)) {
275:                    re = "NaN";
276:                }
277:                String im = null;
278:                if (Math.abs(imag) == 1) {
279:                    im = "";
280:                } else {
281:                    im = FormatNumber.format(Math.abs(imag));
282:                    if (Double.isInfinite(imag)) {
283:                        im = "Inf";
284:                    } else if (Double.isInfinite(-imag)) {
285:                        im = "-Inf";
286:                    } else if (Double.isNaN(imag)) {
287:                        im = "NaN";
288:                    }
289:                }
290:                return re + sign + im + iota;
291:            }
292:
293:            public IComplex conjugate() {
294:                IComplex c = new DefaultComplexImpl(real, -1 * imag);
295:                return c;
296:            }
297:
298:            public static void main(String[] args) {
299:                long start = System.currentTimeMillis();
300:                long n = 1000000000;
301:                for (int i = 0; i < n; i++) {
302:                    //			Complex c1 = new DefaultComplexImpl(1.2, -9.8);
303:                    //			Complex c2 = new DefaultComplexImpl(-0.2, 0.8);
304:                    //			Complex c = c1.times(c2);
305:                    double d1 = 2.39876;
306:                    double d2 = -0.00000001;
307:                    double d = d1 * d2;
308:                }
309:                long end = System.currentTimeMillis();
310:                long diff = end - start;
311:                double t = diff / 1000;
312:                System.out.println("Number of multiplications = " + n);
313:                System.out.println("Number of mili seconds = " + diff);
314:            }
315:
316:            public IComplex negative() {
317:                IComplex c = null;
318:                if (real != 0 && imag != 0) {
319:                    c = new DefaultComplexImpl(-1 * real, -1 * imag);
320:                } else if (real == 0) {
321:                    c = new DefaultComplexImpl(0, -1 * imag);
322:                } else if (imag == 0) {
323:                    c = new DefaultComplexImpl(-1 * real, 0);
324:                }
325:                return c;
326:            }
327:
328:            public IComplex pow(double x) {
329:                double absz = abs();
330:                IComplex result = null;
331:                if (absz == 0.0) {
332:                    result = this ;
333:                } else {
334:                    double e = Math.pow(absz, x);
335:                    if (imag == 0) {
336:                        result = new DefaultComplexImpl(e, 0.0);
337:                    } else {
338:                        double a = argument();
339:                        result = new DefaultComplexImpl(e * Math.cos(x * a), e
340:                                * Math.sin(x * a));
341:                    }
342:                }
343:                return result;
344:
345:            }
346:
347:            public IComplex pow(IComplex c) {
348:                IComplex result = null;
349:                //TODO method LOG should be moved to this class 
350:                result = Elfun.EXP(Elfun.LOG(this ).times(c));
351:                return result;
352:
353:            }
354:
355:            public double abs() {
356:                double x = Math.abs(real);
357:                double y = Math.abs(imag);
358:
359:                if (Double.isInfinite(x) || Double.isInfinite(y))
360:                    return Double.POSITIVE_INFINITY;
361:
362:                if (x + y == 0.0) {
363:                    return 0.0;
364:                } else if (x > y) {
365:                    y /= x;
366:                    return x * Math.sqrt(1.0 + y * y);
367:                } else {
368:                    x /= y;
369:                    return y * Math.sqrt(x * x + 1.0);
370:                }
371:            }
372:
373:            public double argument() {
374:                return Math.atan2(imag, real);
375:            }
376:
377:            public boolean lessThan(IComplex c) {
378:                if (abs() < c.abs()) {
379:                    return true;
380:                }
381:                return false;
382:            }
383:
384:            public boolean lessThan(double d) {
385:                boolean rtn = false;
386:                if (imag == 0.0) {
387:                    if (real < d)
388:                        rtn = true;
389:                } else {
390:                    if (abs() < d)
391:                        rtn = true;
392:                }
393:                return rtn;
394:            }
395:
396:            public boolean greaterThan(IComplex c) {
397:                if (abs() > c.abs()) {
398:                    return true;
399:                }
400:                return false;
401:            }
402:
403:            public boolean greaterThan(double d) {
404:                boolean rtn = false;
405:                if (imag == 0.0) {
406:                    if (real > d)
407:                        rtn = true;
408:                } else {
409:                    if (abs() > d)
410:                        rtn = true;
411:                }
412:                return rtn;
413:            }
414:
415:            public boolean lessThanEqual(IComplex c) {
416:                if (abs() <= c.abs()) {
417:                    return true;
418:                }
419:                return false;
420:            }
421:
422:            public boolean greaterThanEqual(IComplex c) {
423:                if (abs() >= c.abs()) {
424:                    return true;
425:                }
426:                return false;
427:            }
428:
429:            public boolean isReal() {
430:                return !isComplex();
431:            }
432:
433:            public boolean isComplex() {
434:                if (imag != 0.0)
435:                    return true;
436:                return false;
437:            }
438:
439:            public IComplex sqr() {
440:                return new DefaultComplexImpl(real * real - imag * imag, 2.0
441:                        * real * imag);
442:            }
443:
444:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.