Source Code Cross Referenced for AesCipher.java in  » Installer » VAInstall » Acme » Crypto » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Installer » VAInstall » Acme.Crypto 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        // AesCipher - the AES encryption method
002:        //
003:        // Before being selected as the Advanced Encryption Standard this was
004:        // known as Rijndael, and was designed by Joan Daemen and Vincent Rijmen.
005:        // Most of the algorithm code is copyright by them.  A few modifications
006:        // to the algorithm, and the surrounding glue, are:
007:        //
008:        // Copyright (C) 1996,2000 by Jef Poskanzer <jef@acme.com>.
009:        // All rights reserved.
010:        //
011:        // Redistribution and use in source and binary forms, with or without
012:        // modification, are permitted provided that the following conditions
013:        // are met:
014:        // 1. Redistributions of source code must retain the above copyright
015:        //    notice, this list of conditions and the following disclaimer.
016:        // 2. Redistributions in binary form must reproduce the above copyright
017:        //    notice, this list of conditions and the following disclaimer in the
018:        //    documentation and/or other materials provided with the distribution.
019:        //
020:        // THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
021:        // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
022:        // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
023:        // ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
024:        // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
025:        // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
026:        // OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
027:        // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
028:        // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
029:        // OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
030:        // SUCH DAMAGE.
031:        //
032:        // Visit the ACME Labs Java page for up-to-date versions of this and other
033:        // fine Java utilities: http://www.acme.com/java/
034:
035:        package Acme.Crypto;
036:
037:        import java.io.*;
038:
039:        /// The AES encryption method.
040:        // <P>
041:        // Before being selected as the Advanced Encryption Standard this was
042:        // known as Rijndael, and was designed by Joan Daemen and Vincent Rijmen.
043:        // <P>
044:        // <A HREF="/resources/classes/Acme/Crypto/AesCipher.java">Fetch the software.</A><BR>
045:        // <A HREF="/resources/classes/Acme.tar.gz">Fetch the entire Acme package.</A>
046:        // <P>
047:        // @see EncryptedOutputStream
048:        // @see EncryptedInputStream
049:
050:        public class AesCipher extends BlockCipher {
051:
052:            // Constants, variables, and auxillary routines.
053:
054:            // Key size in bytes.  Valid values are 16, 24, and 32.
055:            public static final int KEY_SIZE = 16;
056:
057:            // Block size in bytes.  Valid values are 16, 24, and 32.
058:            public static final int BLOCK_SIZE = 16;
059:
060:            private static final int[] alog = new int[256];
061:            private static final int[] log = new int[256];
062:
063:            private static final byte[] S = new byte[256];
064:            private static final byte[] Si = new byte[256];
065:            private static final int[] T1 = new int[256];
066:            private static final int[] T2 = new int[256];
067:            private static final int[] T3 = new int[256];
068:            private static final int[] T4 = new int[256];
069:            private static final int[] T5 = new int[256];
070:            private static final int[] T6 = new int[256];
071:            private static final int[] T7 = new int[256];
072:            private static final int[] T8 = new int[256];
073:            private static final int[] U1 = new int[256];
074:            private static final int[] U2 = new int[256];
075:            private static final int[] U3 = new int[256];
076:            private static final int[] U4 = new int[256];
077:            private static final byte[] rcon = new byte[30];
078:
079:            static private final int[][][] shifts = new int[][][] {
080:                    { { 0, 0 }, { 1, 3 }, { 2, 2 }, { 3, 1 } },
081:                    { { 0, 0 }, { 1, 5 }, { 2, 4 }, { 3, 3 } },
082:                    { { 0, 0 }, { 1, 7 }, { 3, 5 }, { 4, 4 } } };
083:
084:            private static final char[] HEX_DIGITS = { '0', '1', '2', '3', '4',
085:                    '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
086:
087:            // Static initializer - to intialise S-boxes and T-boxes
088:            static {
089:                int ROOT = 0x11B;
090:                int i, j = 0;
091:
092:                // Produce log and alog tables, needed for multiplying in the
093:                // field GF(2^m) (generator = 3).
094:                alog[0] = 1;
095:                for (i = 1; i < 256; ++i) {
096:                    j = (alog[i - 1] << 1) ^ alog[i - 1];
097:                    if ((j & 0x100) != 0)
098:                        j ^= ROOT;
099:                    alog[i] = j;
100:                }
101:                for (i = 1; i < 255; ++i)
102:                    log[alog[i]] = i;
103:                byte[][] A = new byte[][] { { 1, 1, 1, 1, 1, 0, 0, 0 },
104:                        { 0, 1, 1, 1, 1, 1, 0, 0 }, { 0, 0, 1, 1, 1, 1, 1, 0 },
105:                        { 0, 0, 0, 1, 1, 1, 1, 1 }, { 1, 0, 0, 0, 1, 1, 1, 1 },
106:                        { 1, 1, 0, 0, 0, 1, 1, 1 }, { 1, 1, 1, 0, 0, 0, 1, 1 },
107:                        { 1, 1, 1, 1, 0, 0, 0, 1 } };
108:                byte[] B = new byte[] { 0, 1, 1, 0, 0, 0, 1, 1 };
109:
110:                // Substitution box based on F^{-1}(x).
111:                int t;
112:                byte[][] box = new byte[256][8];
113:                box[1][7] = 1;
114:                for (i = 2; i < 256; ++i) {
115:                    j = alog[255 - log[i]];
116:                    for (t = 0; t < 8; ++t)
117:                        box[i][t] = (byte) ((j >>> (7 - t)) & 0x01);
118:                }
119:                // Affine transform:  box[i] <- B + A*box[i].
120:                byte[][] cox = new byte[256][8];
121:                for (i = 0; i < 256; ++i)
122:                    for (t = 0; t < 8; ++t) {
123:                        cox[i][t] = B[t];
124:                        for (j = 0; j < 8; ++j)
125:                            cox[i][t] ^= A[t][j] * box[i][j];
126:                    }
127:                // S-boxes and inverse S-boxes.
128:                for (i = 0; i < 256; ++i) {
129:                    S[i] = (byte) (cox[i][0] << 7);
130:                    for (t = 1; t < 8; ++t)
131:                        S[i] ^= cox[i][t] << (7 - t);
132:                    Si[S[i] & 0xFF] = (byte) i;
133:                }
134:                // T-boxes.
135:                byte[][] G = new byte[][] { { 2, 1, 1, 3 }, { 3, 2, 1, 1 },
136:                        { 1, 3, 2, 1 }, { 1, 1, 3, 2 } };
137:                byte[][] AA = new byte[4][8];
138:                for (i = 0; i < 4; ++i) {
139:                    for (j = 0; j < 4; ++j)
140:                        AA[i][j] = G[i][j];
141:                    AA[i][i + 4] = 1;
142:                }
143:                byte pivot, tmp;
144:                byte[][] iG = new byte[4][4];
145:                for (i = 0; i < 4; ++i) {
146:                    pivot = AA[i][i];
147:                    if (pivot == 0) {
148:                        t = i + 1;
149:                        while ((AA[t][i] == 0) && (t < 4))
150:                            ++t;
151:                        if (t == 4)
152:                            throw new RuntimeException(
153:                                    "G matrix is not invertible");
154:                        else {
155:                            for (j = 0; j < 8; ++j) {
156:                                tmp = AA[i][j];
157:                                AA[i][j] = AA[t][j];
158:                                AA[t][j] = (byte) tmp;
159:                            }
160:                            pivot = AA[i][i];
161:                        }
162:                    }
163:                    for (j = 0; j < 8; ++j)
164:                        if (AA[i][j] != 0)
165:                            AA[i][j] = (byte) alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF]) % 255];
166:                    for (t = 0; t < 4; ++t)
167:                        if (i != t) {
168:                            for (j = i + 1; j < 8; ++j)
169:                                AA[t][j] ^= mul(AA[i][j], AA[t][i]);
170:                            AA[t][i] = 0;
171:                        }
172:                }
173:                for (i = 0; i < 4; ++i)
174:                    for (j = 0; j < 4; ++j)
175:                        iG[i][j] = AA[i][j + 4];
176:
177:                int s;
178:                for (t = 0; t < 256; ++t) {
179:                    s = S[t];
180:                    T1[t] = mul4(s, G[0]);
181:                    T2[t] = mul4(s, G[1]);
182:                    T3[t] = mul4(s, G[2]);
183:                    T4[t] = mul4(s, G[3]);
184:
185:                    s = Si[t];
186:                    T5[t] = mul4(s, iG[0]);
187:                    T6[t] = mul4(s, iG[1]);
188:                    T7[t] = mul4(s, iG[2]);
189:                    T8[t] = mul4(s, iG[3]);
190:
191:                    U1[t] = mul4(t, iG[0]);
192:                    U2[t] = mul4(t, iG[1]);
193:                    U3[t] = mul4(t, iG[2]);
194:                    U4[t] = mul4(t, iG[3]);
195:                }
196:                // Round constants.
197:                rcon[0] = 1;
198:                int r = 1;
199:                for (t = 1; t < 30;)
200:                    rcon[t++] = (byte) (r = mul(2, r));
201:            }
202:
203:            /// Multiply two elements of GF(2^m).
204:            static final int mul(int a, int b) {
205:                return (a != 0 && b != 0) ? alog[(log[a & 0xFF] + log[b & 0xFF]) % 255]
206:                        : 0;
207:            }
208:
209:            /// Convenience method used in generating Transposition boxes.
210:            static final int mul4(int a, byte[] b) {
211:                if (a == 0)
212:                    return 0;
213:                a = log[a & 0xFF];
214:                int a0 = (b[0] != 0) ? alog[(a + log[b[0] & 0xFF]) % 255] & 0xFF
215:                        : 0;
216:                int a1 = (b[1] != 0) ? alog[(a + log[b[1] & 0xFF]) % 255] & 0xFF
217:                        : 0;
218:                int a2 = (b[2] != 0) ? alog[(a + log[b[2] & 0xFF]) % 255] & 0xFF
219:                        : 0;
220:                int a3 = (b[3] != 0) ? alog[(a + log[b[3] & 0xFF]) % 255] & 0xFF
221:                        : 0;
222:                return a0 << 24 | a1 << 16 | a2 << 8 | a3;
223:            }
224:
225:            /// Return the number of rounds for a given Rijndael's key and block sizes.
226:            // @param keySize    The size of the user key material in bytes.
227:            // @param blockSize  The desired block size in bytes.
228:            // @return The number of rounds for a given Rijndael's key and block sizes.
229:            public static int getRounds(int keySize, int blockSize) {
230:                switch (keySize) {
231:                case 16:
232:                    return blockSize == 16 ? 10 : (blockSize == 24 ? 12 : 14);
233:                case 24:
234:                    return blockSize != 32 ? 12 : 14;
235:                default: // 32 bytes = 256 bits
236:                    return 14;
237:                }
238:            }
239:
240:            // Constructors.
241:
242:            // Constructor, string key.
243:            public AesCipher(String keyStr) {
244:                super (KEY_SIZE, BLOCK_SIZE);
245:                setKey(keyStr);
246:            }
247:
248:            // Constructor, byte-array key.
249:            public AesCipher(byte[] key) {
250:                super (KEY_SIZE, BLOCK_SIZE);
251:                setKey(key);
252:            }
253:
254:            // Key routines.
255:
256:            private int ROUNDS = getRounds(KEY_SIZE, BLOCK_SIZE);
257:            private int BC = BLOCK_SIZE / 4;
258:            private int[][] Ke = new int[ROUNDS + 1][BC]; // encryption round keys
259:            private int[][] Kd = new int[ROUNDS + 1][BC]; // decryption round keys
260:
261:            /// Set the key.
262:            public void setKey(byte[] key) {
263:                if (key.length != KEY_SIZE)
264:                    throw new RuntimeException("Incorrect key length");
265:                int ROUND_KEY_COUNT = (ROUNDS + 1) * BC;
266:                int KC = KEY_SIZE / 4;
267:                int[] tk = new int[KC];
268:                int i, j;
269:
270:                // Copy user material bytes into temporary ints.
271:                for (i = 0, j = 0; i < KC;)
272:                    tk[i++] = (key[j++] & 0xFF) << 24 | (key[j++] & 0xFF) << 16
273:                            | (key[j++] & 0xFF) << 8 | (key[j++] & 0xFF);
274:                // Copy values into round key arrays.
275:                int t = 0;
276:                for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); ++j, ++t) {
277:                    Ke[t / BC][t % BC] = tk[j];
278:                    Kd[ROUNDS - (t / BC)][t % BC] = tk[j];
279:                }
280:                int tt, rconpointer = 0;
281:                while (t < ROUND_KEY_COUNT) {
282:                    // Extrapolate using phi (the round key evolution function).
283:                    tt = tk[KC - 1];
284:                    tk[0] ^= (S[(tt >>> 16) & 0xFF] & 0xFF) << 24
285:                            ^ (S[(tt >>> 8) & 0xFF] & 0xFF) << 16
286:                            ^ (S[tt & 0xFF] & 0xFF) << 8
287:                            ^ (S[(tt >>> 24) & 0xFF] & 0xFF)
288:                            ^ (rcon[rconpointer++] & 0xFF) << 24;
289:                    if (KC != 8)
290:                        for (i = 1, j = 0; i < KC;)
291:                            tk[i++] ^= tk[j++];
292:                    else {
293:                        for (i = 1, j = 0; i < KC / 2;)
294:                            tk[i++] ^= tk[j++];
295:                        tt = tk[KC / 2 - 1];
296:                        tk[KC / 2] ^= (S[tt & 0xFF] & 0xFF)
297:                                ^ (S[(tt >>> 8) & 0xFF] & 0xFF) << 8
298:                                ^ (S[(tt >>> 16) & 0xFF] & 0xFF) << 16
299:                                ^ (S[(tt >>> 24) & 0xFF] & 0xFF) << 24;
300:                        for (j = KC / 2, i = j + 1; i < KC;)
301:                            tk[i++] ^= tk[j++];
302:                    }
303:                    // Copy values into round key arrays.
304:                    for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); ++j, ++t) {
305:                        Ke[t / BC][t % BC] = tk[j];
306:                        Kd[ROUNDS - (t / BC)][t % BC] = tk[j];
307:                    }
308:                }
309:                for (int r = 1; r < ROUNDS; ++r)
310:                    // inverse MixColumn where needed
311:                    for (j = 0; j < BC; ++j) {
312:                        tt = Kd[r][j];
313:                        Kd[r][j] = U1[(tt >>> 24) & 0xFF]
314:                                ^ U2[(tt >>> 16) & 0xFF]
315:                                ^ U3[(tt >>> 8) & 0xFF] ^ U4[tt & 0xFF];
316:                    }
317:            }
318:
319:            // Block encryption routines.
320:
321:            private int[] tempInts = new int[8];
322:
323:            /// Encrypt a block.
324:            public void encrypt(byte[] clearText, int clearOff,
325:                    byte[] cipherText, int cipherOff) {
326:                int SC = (BC == 4 ? 0 : (BC == 6 ? 1 : 2));
327:                int s1 = shifts[SC][1][0];
328:                int s2 = shifts[SC][2][0];
329:                int s3 = shifts[SC][3][0];
330:                int[] a = new int[BC];
331:                int[] t = new int[BC]; // temporary work array
332:                int i;
333:                int tt;
334:
335:                for (i = 0; i < BC; ++i)
336:                    // plaintext to ints + key
337:                    t[i] = ((clearText[clearOff++] & 0xFF) << 24
338:                            | (clearText[clearOff++] & 0xFF) << 16
339:                            | (clearText[clearOff++] & 0xFF) << 8 | (clearText[clearOff++] & 0xFF))
340:                            ^ Ke[0][i];
341:                // Apply round transforms.
342:                for (int r = 1; r < ROUNDS; ++r) {
343:                    for (i = 0; i < BC; ++i)
344:                        a[i] = (T1[(t[i] >>> 24) & 0xFF]
345:                                ^ T2[(t[(i + s1) % BC] >>> 16) & 0xFF]
346:                                ^ T3[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ T4[t[(i + s3)
347:                                % BC] & 0xFF])
348:                                ^ Ke[r][i];
349:                    System.arraycopy(a, 0, t, 0, BC);
350:                }
351:                // Last round is special.
352:                for (i = 0; i < BC; ++i) {
353:                    tt = Ke[ROUNDS][i];
354:                    cipherText[cipherOff++] = (byte) (S[(t[i] >>> 24) & 0xFF] ^ (tt >>> 24));
355:                    cipherText[cipherOff++] = (byte) (S[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16));
356:                    cipherText[cipherOff++] = (byte) (S[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8));
357:                    cipherText[cipherOff++] = (byte) (S[t[(i + s3) % BC] & 0xFF] ^ tt);
358:                }
359:            }
360:
361:            /// Decrypt a block.
362:            public void decrypt(byte[] cipherText, int cipherOff,
363:                    byte[] clearText, int clearOff) {
364:                int SC = (BC == 4 ? 0 : (BC == 6 ? 1 : 2));
365:                int s1 = shifts[SC][1][1];
366:                int s2 = shifts[SC][2][1];
367:                int s3 = shifts[SC][3][1];
368:                int[] a = new int[BC];
369:                int[] t = new int[BC]; // temporary work array
370:                int i;
371:                int tt;
372:
373:                for (i = 0; i < BC; ++i)
374:                    // ciphertext to ints + key
375:                    t[i] = ((cipherText[cipherOff++] & 0xFF) << 24
376:                            | (cipherText[cipherOff++] & 0xFF) << 16
377:                            | (cipherText[cipherOff++] & 0xFF) << 8 | (cipherText[cipherOff++] & 0xFF))
378:                            ^ Kd[0][i];
379:                // Apply round transforms.
380:                for (int r = 1; r < ROUNDS; ++r) {
381:                    for (i = 0; i < BC; ++i)
382:                        a[i] = (T5[(t[i] >>> 24) & 0xFF]
383:                                ^ T6[(t[(i + s1) % BC] >>> 16) & 0xFF]
384:                                ^ T7[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ T8[t[(i + s3)
385:                                % BC] & 0xFF])
386:                                ^ Kd[r][i];
387:                    System.arraycopy(a, 0, t, 0, BC);
388:                }
389:                // Last round is special.
390:                for (i = 0; i < BC; ++i) {
391:                    tt = Kd[ROUNDS][i];
392:                    clearText[clearOff++] = (byte) (Si[(t[i] >>> 24) & 0xFF] ^ (tt >>> 24));
393:                    clearText[clearOff++] = (byte) (Si[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16));
394:                    clearText[clearOff++] = (byte) (Si[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8));
395:                    clearText[clearOff++] = (byte) (Si[t[(i + s3) % BC] & 0xFF] ^ tt);
396:                }
397:            }
398:
399:            /// Test routine.
400:            public static void main(String[] args) {
401:                byte[] cipherText = new byte[16];
402:                byte[] decipherText = new byte[16];
403:
404:                BlockCipher aesa = new AesCipher("0123456789");
405:                byte[] clearText1 = { (byte) 0x00, (byte) 0x00, (byte) 0x00,
406:                        (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,
407:                        (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,
408:                        (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00,
409:                        (byte) 0x00 };
410:                System.out.println("cleartext: " + toStringBlock(clearText1));
411:                aesa.encrypt(clearText1, cipherText);
412:                System.out.println("encrypted: " + toStringBlock(cipherText));
413:                aesa.decrypt(cipherText, decipherText);
414:                System.out.println("decrypted: " + toStringBlock(decipherText));
415:
416:                System.out.println();
417:
418:                BlockCipher aesb = new AesCipher("abcdefghijklmnopqrstuvwxyz");
419:                byte[] clearText2 = { (byte) 0x00, (byte) 0x01, (byte) 0x02,
420:                        (byte) 0x03, (byte) 0x04, (byte) 0x05, (byte) 0x06,
421:                        (byte) 0x07, (byte) 0x08, (byte) 0x09, (byte) 0x0a,
422:                        (byte) 0x0b, (byte) 0x0c, (byte) 0x0d, (byte) 0x0e,
423:                        (byte) 0x0f };
424:                System.out.println("cleartext: " + toStringBlock(clearText2));
425:                aesb.encrypt(clearText2, cipherText);
426:                System.out.println("encrypted: " + toStringBlock(cipherText));
427:                aesb.decrypt(cipherText, decipherText);
428:                System.out.println("decrypted: " + toStringBlock(decipherText));
429:            }
430:
431:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.