Source Code Cross Referenced for TP_Expression.java in  » GIS » GeOxygene-1.3 » fr » ign » cogit » geoxygene » spatial » topoprim » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » GIS » GeOxygene 1.3 » fr.ign.cogit.geoxygene.spatial.topoprim 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * This file is part of the GeOxygene project source files. 
003:         * 
004:         * GeOxygene aims at providing an open framework which implements OGC/ISO specifications for 
005:         * the development and deployment of geographic (GIS) applications. It is a open source 
006:         * contribution of the COGIT laboratory at the Institut Géographique National (the French 
007:         * National Mapping Agency).
008:         * 
009:         * See: http://oxygene-project.sourceforge.net 
010:         *  
011:         * Copyright (C) 2005 Institut Géographique National
012:         *
013:         * This library is free software; you can redistribute it and/or modify it under the terms
014:         * of the GNU Lesser General Public License as published by the Free Software Foundation; 
015:         * either version 2.1 of the License, or any later version.
016:         *
017:         * This library is distributed in the hope that it will be useful, but WITHOUT ANY 
018:         * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A 
019:         * PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
020:         *
021:         * You should have received a copy of the GNU Lesser General Public License along with 
022:         * this library (see file LICENSE if present); if not, write to the Free Software 
023:         * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
024:         *  
025:         */
026:
027:        package fr.ign.cogit.geoxygene.spatial.topoprim;
028:
029:        import java.util.ArrayList;
030:        import java.util.List;
031:
032:        /**
033:         * Permet de manipuler algébriquement les primitives, sous forme de polynomes de degré 1.
034:         * Le TP_DirectedTopo représente un terme du polynome. Le TP_Expression représente tout le polynome.
035:         *
036:         * @author Thierry Badard & Arnaud Braun
037:         * @version 1.0
038:         * 
039:         */
040:        //On n'utilise pas la classe TP_ExpressionTerm de la norme. 
041:
042:        public class TP_Expression {
043:
044:            /** Liste des termes. */
045:            protected List term;
046:
047:            /** Renvoie le terme de rang i. */
048:            public TP_DirectedTopo getTerm(int i) {
049:                return (TP_DirectedTopo) this .term.get(i);
050:            }
051:
052:            /** Renvoie la liste des termes. */
053:            public List getTermList() {
054:                return this .term;
055:            }
056:
057:            /** Affecte une valeur au rang i. */
058:            public void setTerm(int i, TP_DirectedTopo value) {
059:                this .term.set(i, value);
060:            }
061:
062:            /** Ajoute un terme en fin de liste. */
063:            public void addTerm(TP_DirectedTopo value) {
064:                this .term.add(value);
065:            }
066:
067:            /** Ajoute un terme au rang i. */
068:            public void addTerm(int i, TP_DirectedTopo value) {
069:                this .term.add(i, value);
070:            }
071:
072:            /** Efface le terme de valeur "value". */
073:            public void removeTerm(TP_DirectedTopo value) {
074:                this .term.remove(value);
075:            }
076:
077:            /** Efface le terme de rang i. */
078:            public void removeTerm(int i) {
079:                this .term.remove(i);
080:            }
081:
082:            /** Renvoie le nombre de termes. */
083:            public int sizeTerm() {
084:                return this .term.size();
085:            }
086:
087:            /** Constructeur par défaut. */
088:            public TP_Expression() {
089:                term = new ArrayList();
090:            }
091:
092:            /**Constructeur à partir d'un TP_DirectedTopo.*/
093:            public TP_Expression(TP_DirectedTopo dt) {
094:                term = new ArrayList();
095:                term.add(dt);
096:            }
097:
098:            /** Constructeur à partir de plusieurs TP_DirectedTopo. */
099:            public TP_Expression(List sdt) {
100:                term = new ArrayList();
101:                for (int i = 0; i < sdt.size(); i++) {
102:                    TP_DirectedTopo dt = (TP_DirectedTopo) sdt.get(i);
103:                    term.add(dt);
104:                }
105:                this .simplify();
106:            }
107:
108:            /** Addition de 2 TP_Expression (self et le TP_Expression passé en paramètre). */
109:            public TP_Expression plus(TP_Expression s) {
110:                TP_Expression result = new TP_Expression();
111:                result.term.addAll(this .term);
112:                result.term.addAll(s.term);
113:                result.simplify();
114:                return result;
115:            }
116:
117:            /** Soustraction de 2 TP_Expression (self et le TP_Expression passé en paramètre). */
118:            public TP_Expression minus(TP_Expression s) {
119:                TP_Expression result = new TP_Expression();
120:                result.term.addAll(this .term);
121:                for (int i = 0; i < s.sizeTerm(); i++) {
122:                    TP_DirectedTopo dt = s.getTerm(i);
123:                    TP_DirectedTopo dtnegate = null;
124:                    // cast necessaire pour utiliser la fonction negate()
125:                    if (dt instanceof  TP_DirectedNode)
126:                        dtnegate = ((TP_DirectedNode) dt).negate();
127:                    else if (dt instanceof  TP_DirectedEdge)
128:                        dtnegate = ((TP_DirectedEdge) dt).negate();
129:                    else if (dt instanceof  TP_DirectedFace)
130:                        dtnegate = ((TP_DirectedFace) dt).negate();
131:                    else if (dt instanceof  TP_DirectedSolid)
132:                        dtnegate = ((TP_DirectedSolid) dt).negate();
133:                    else if (dt instanceof  TP_Node)
134:                        dtnegate = ((TP_Node) dt).negate();
135:                    else if (dt instanceof  TP_Edge)
136:                        dtnegate = ((TP_Edge) dt).negate();
137:                    else if (dt instanceof  TP_Face)
138:                        dtnegate = ((TP_Face) dt).negate();
139:                    else if (dt instanceof  TP_Solid)
140:                        dtnegate = ((TP_Solid) dt).negate();
141:                    result.term.add(dtnegate);
142:                }
143:                result.simplify();
144:                return result;
145:            }
146:
147:            /** Renvoie l'opposé de self.*/
148:            public TP_Expression negate() {
149:                TP_Expression result = new TP_Expression();
150:                int n = this .sizeTerm();
151:                for (int i = 0; i < n; i++) {
152:                    TP_DirectedTopo dt = this .getTerm(n - i - 1);
153:                    TP_DirectedTopo dtnegate = null;
154:                    // cast necessaire pour utiliser la fonction negate()
155:                    if (dt instanceof  TP_DirectedNode)
156:                        dtnegate = ((TP_DirectedNode) dt).negate();
157:                    else if (dt instanceof  TP_DirectedEdge)
158:                        dtnegate = ((TP_DirectedEdge) dt).negate();
159:                    else if (dt instanceof  TP_DirectedFace)
160:                        dtnegate = ((TP_DirectedFace) dt).negate();
161:                    else if (dt instanceof  TP_DirectedSolid)
162:                        dtnegate = ((TP_DirectedSolid) dt).negate();
163:                    else if (dt instanceof  TP_Node)
164:                        dtnegate = ((TP_Node) dt).negate();
165:                    else if (dt instanceof  TP_Edge)
166:                        dtnegate = ((TP_Edge) dt).negate();
167:                    else if (dt instanceof  TP_Face)
168:                        dtnegate = ((TP_Face) dt).negate();
169:                    else if (dt instanceof  TP_Solid)
170:                        dtnegate = ((TP_Solid) dt).negate();
171:                    result.term.add(dtnegate);
172:                }
173:                return result;
174:            }
175:
176:            /** TRUE si self est un zéro polynomial.*/
177:            public boolean isZero() {
178:                this .simplify();
179:                if (this .sizeTerm() == 0)
180:                    return true;
181:                else
182:                    return false;
183:            }
184:
185:            /** TRUE si la frontière est zéro. */
186:            public boolean isCycle() {
187:                if (this .boundary().isZero())
188:                    return true;
189:                else
190:                    return false;
191:            }
192:
193:            /** Remplace chaque boundary de chaque TP_Primitive de chaque TP_DirectedTopo, et simplifie le résultat. */
194:            public TP_Expression boundary() {
195:                TP_Expression result = new TP_Expression();
196:                for (int i = 0; i < this .sizeTerm(); i++) {
197:                    TP_DirectedTopo dt = this .getTerm(i);
198:                    TP_Boundary dtbdy = null;
199:                    // cast necessaire pour utiliser la fonction boundary()
200:                    if (dt instanceof  TP_DirectedNode)
201:                        dtbdy = ((TP_DirectedNode) dt).boundary();
202:                    else if (dt instanceof  TP_DirectedEdge)
203:                        dtbdy = ((TP_DirectedEdge) dt).boundary();
204:                    else if (dt instanceof  TP_DirectedFace)
205:                        dtbdy = ((TP_DirectedFace) dt).boundary();
206:                    else if (dt instanceof  TP_DirectedSolid)
207:                        dtbdy = ((TP_DirectedSolid) dt).boundary();
208:                    else if (dt instanceof  TP_Node)
209:                        dtbdy = ((TP_Node) dt).boundary();
210:                    else if (dt instanceof  TP_Edge)
211:                        dtbdy = ((TP_Edge) dt).boundary();
212:                    else if (dt instanceof  TP_Face)
213:                        dtbdy = ((TP_Face) dt).boundary();
214:                    else if (dt instanceof  TP_Solid)
215:                        dtbdy = ((TP_Solid) dt).boundary();
216:                    result = result.plus(dtbdy);
217:                }
218:                return result;
219:            }
220:
221:            /** TRUE s'il y a égalité polynomiale. */
222:            public boolean equals(TP_Expression s) {
223:                TP_Expression this Bis = new TP_Expression();
224:                TP_Expression sBis = new TP_Expression();
225:                for (int i = 0; i < this .sizeTerm(); i++)
226:                    this Bis.addTerm(this .getTerm(i));
227:                for (int i = 0; i < s.sizeTerm(); i++)
228:                    sBis.addTerm(s.getTerm(i));
229:                this Bis.simplify();
230:                sBis.simplify();
231:                if (this Bis.sizeTerm() != sBis.sizeTerm())
232:                    return false;
233:                while (this Bis.sizeTerm() > 0) {
234:                    TP_DirectedTopo dt1 = this Bis.getTerm(0);
235:                    for (int j = 0; j < sBis.sizeTerm(); j++) {
236:                        TP_DirectedTopo dt2 = sBis.getTerm(j);
237:                        if (dt1.getId() == dt2.getId()) {
238:                            this Bis.removeTerm(0);
239:                            sBis.removeTerm(j);
240:                            break;
241:                        }
242:                        return false;
243:                    }
244:                }
245:                return true;
246:            }
247:
248:            /** Cast en liste de TP_Primitive. Dans la norme, on convertit en set.*/
249:            public List support() {
250:                List result = new ArrayList();
251:                for (int i = 0; i < this .sizeTerm(); i++) {
252:                    TP_DirectedTopo dt = this .getTerm(i);
253:                    TP_Primitive prim = null;
254:                    // cast necessaire pour utiliser la fonction boundary()
255:                    if (dt instanceof  TP_DirectedNode)
256:                        prim = ((TP_DirectedNode) dt).topo();
257:                    else if (dt instanceof  TP_DirectedEdge)
258:                        prim = ((TP_DirectedEdge) dt).topo();
259:                    else if (dt instanceof  TP_DirectedFace)
260:                        prim = ((TP_DirectedFace) dt).topo();
261:                    else if (dt instanceof  TP_DirectedSolid)
262:                        prim = ((TP_DirectedSolid) dt).topo();
263:                    else if (dt instanceof  TP_Node)
264:                        prim = ((TP_Node) dt).topo();
265:                    else if (dt instanceof  TP_Edge)
266:                        prim = ((TP_Edge) dt).topo();
267:                    else if (dt instanceof  TP_Face)
268:                        prim = ((TP_Face) dt).topo();
269:                    else if (dt instanceof  TP_Solid)
270:                        prim = ((TP_Solid) dt).topo();
271:                    result.add(prim);
272:                }
273:                return result;
274:            }
275:
276:            /** Cast chaque coBoundary de chaque TP_Primitive de chaque TP_DirectedTopo en TP_Expression, et simplifie le résultat.*/
277:            public TP_Expression coBoundary() {
278:                TP_Expression result = new TP_Expression();
279:                for (int i = 0; i < this .sizeTerm(); i++) {
280:                    TP_DirectedTopo dt = this .getTerm(i);
281:                    List theCoBoundary = null;
282:                    // cast necessaire pour utiliser la fonction boundary()
283:                    if (dt instanceof  TP_DirectedNode)
284:                        theCoBoundary = ((TP_DirectedNode) dt).coBoundary();
285:                    else if (dt instanceof  TP_DirectedEdge)
286:                        theCoBoundary = ((TP_DirectedEdge) dt).coBoundary();
287:                    else if (dt instanceof  TP_DirectedFace)
288:                        theCoBoundary = ((TP_DirectedFace) dt).coBoundary();
289:                    else if (dt instanceof  TP_DirectedSolid)
290:                        theCoBoundary = ((TP_DirectedSolid) dt).coBoundary();
291:                    else if (dt instanceof  TP_Node)
292:                        theCoBoundary = ((TP_Node) dt).coBoundary();
293:                    else if (dt instanceof  TP_Edge)
294:                        theCoBoundary = ((TP_Edge) dt).coBoundary();
295:                    else if (dt instanceof  TP_Face)
296:                        theCoBoundary = ((TP_Face) dt).coBoundary();
297:                    else if (dt instanceof  TP_Solid)
298:                        theCoBoundary = ((TP_Solid) dt).coBoundary();
299:                    TP_Expression tpe = new TP_Expression(theCoBoundary);
300:                    result = result.plus(tpe);
301:                }
302:                return result;
303:            }
304:
305:            /** Cast en liste de TP_DirectedTopo. Dans la norme, on convertit en set.*/
306:            public List asSet() {
307:                List result = new ArrayList();
308:                for (int i = 0; i < this .sizeTerm(); i++) {
309:                    TP_DirectedTopo dt = this .getTerm(i);
310:                    result.add(dt);
311:                }
312:                return result;
313:            }
314:
315:            /**= Usage interne. Simplifie le TP_Expression en annulant les termes opposés. */
316:            private void simplify() {
317:                int n = this .sizeTerm();
318:                if (n > 1) {
319:                    for (int i = 0; i < n - 1; i++) {
320:                        TP_DirectedTopo dt1 = this .getTerm(i);
321:                        for (int j = i + 1; j < n; j++) {
322:                            TP_DirectedTopo dt2 = this .getTerm(j);
323:                            if (dt1.getId() == -dt2.getId()) {
324:                                this .removeTerm(j);
325:                                this .removeTerm(i);
326:                                n = n - 2;
327:                                i = i - 1;
328:                                break;
329:                            }
330:                        }
331:                    }
332:                }
333:            }
334:
335:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.