Source Code Cross Referenced for NumericTypeCompiler.java in  » Database-DBMS » db-derby-10.2 » org » apache » derby » impl » sql » compile » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Database DBMS » db derby 10.2 » org.apache.derby.impl.sql.compile 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:
003:           Derby - Class org.apache.derby.impl.sql.compile.NumericTypeCompiler
004:
005:           Licensed to the Apache Software Foundation (ASF) under one or more
006:           contributor license agreements.  See the NOTICE file distributed with
007:           this work for additional information regarding copyright ownership.
008:           The ASF licenses this file to you under the Apache License, Version 2.0
009:           (the "License"); you may not use this file except in compliance with
010:           the License.  You may obtain a copy of the License at
011:
012:              http://www.apache.org/licenses/LICENSE-2.0
013:
014:           Unless required by applicable law or agreed to in writing, software
015:           distributed under the License is distributed on an "AS IS" BASIS,
016:           WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
017:           See the License for the specific language governing permissions and
018:           limitations under the License.
019:
020:         */
021:
022:        package org.apache.derby.impl.sql.compile;
023:
024:        import org.apache.derby.iapi.sql.conn.LanguageConnectionContext;
025:
026:        import org.apache.derby.iapi.services.context.ContextService;
027:
028:        import org.apache.derby.iapi.services.loader.ClassFactory;
029:
030:        import org.apache.derby.iapi.services.sanity.SanityManager;
031:
032:        import org.apache.derby.iapi.services.info.JVMInfo;
033:        import org.apache.derby.iapi.services.io.StoredFormatIds;
034:
035:        import org.apache.derby.iapi.error.StandardException;
036:
037:        import org.apache.derby.iapi.types.DataTypeDescriptor;
038:        import org.apache.derby.iapi.types.DataTypeDescriptor;
039:        import org.apache.derby.iapi.types.DataValueFactory;
040:        import org.apache.derby.iapi.types.NumberDataValue;
041:        import org.apache.derby.iapi.types.TypeId;
042:
043:        import org.apache.derby.iapi.sql.compile.TypeCompiler;
044:
045:        import org.apache.derby.iapi.reference.ClassName;
046:        import org.apache.derby.iapi.reference.Limits;
047:        import org.apache.derby.iapi.reference.SQLState;
048:        import org.apache.derby.iapi.services.compiler.LocalField;
049:        import org.apache.derby.iapi.services.compiler.MethodBuilder;
050:
051:        /**
052:         * This class implements TypeId for the SQL numeric datatype.
053:         *
054:         * @author Jeff Lichtman
055:         */
056:
057:        public final class NumericTypeCompiler extends BaseTypeCompiler {
058:            /** @see TypeCompiler#interfaceName */
059:            public String interfaceName() {
060:                return ClassName.NumberDataValue;
061:            }
062:
063:            /**
064:             * @see TypeCompiler#getCorrespondingPrimitiveTypeName
065:             */
066:
067:            public String getCorrespondingPrimitiveTypeName() {
068:                /* Only numerics and booleans get mapped to Java primitives */
069:                int formatId = getStoredFormatIdFromTypeId();
070:                switch (formatId) {
071:                case StoredFormatIds.DOUBLE_TYPE_ID:
072:                    return "double";
073:
074:                case StoredFormatIds.INT_TYPE_ID:
075:                    return "int";
076:
077:                case StoredFormatIds.LONGINT_TYPE_ID:
078:                    return "long";
079:
080:                case StoredFormatIds.REAL_TYPE_ID:
081:                    return "float";
082:
083:                case StoredFormatIds.SMALLINT_TYPE_ID:
084:                    return "short";
085:
086:                case StoredFormatIds.TINYINT_TYPE_ID:
087:                    return "byte";
088:
089:                case StoredFormatIds.DECIMAL_TYPE_ID:
090:                default:
091:                    if (SanityManager.DEBUG) {
092:                        SanityManager
093:                                .THROWASSERT("unexpected formatId in getCorrespondingPrimitiveTypeName() - "
094:                                        + formatId);
095:                    }
096:                    return null;
097:                }
098:            }
099:
100:            /**
101:             * Get the method name for getting out the corresponding primitive
102:             * Java type.
103:             *
104:             * @return String		The method call name for getting the
105:             *						corresponding primitive Java type.
106:             */
107:            public String getPrimitiveMethodName() {
108:                int formatId = getStoredFormatIdFromTypeId();
109:                switch (formatId) {
110:                case StoredFormatIds.DOUBLE_TYPE_ID:
111:                    return "getDouble";
112:
113:                case StoredFormatIds.INT_TYPE_ID:
114:                    return "getInt";
115:
116:                case StoredFormatIds.LONGINT_TYPE_ID:
117:                    return "getLong";
118:
119:                case StoredFormatIds.REAL_TYPE_ID:
120:                    return "getFloat";
121:
122:                case StoredFormatIds.SMALLINT_TYPE_ID:
123:                    return "getShort";
124:
125:                case StoredFormatIds.TINYINT_TYPE_ID:
126:                    return "getByte";
127:
128:                case StoredFormatIds.DECIMAL_TYPE_ID:
129:                default:
130:                    if (SanityManager.DEBUG) {
131:                        SanityManager
132:                                .THROWASSERT("unexpected formatId in getPrimitiveMethodName() - "
133:                                        + formatId);
134:                    }
135:                    return null;
136:                }
137:            }
138:
139:            /**
140:             * @see TypeCompiler#getCastToCharWidth
141:             */
142:            public int getCastToCharWidth(DataTypeDescriptor dts) {
143:                int formatId = getStoredFormatIdFromTypeId();
144:                switch (formatId) {
145:                case StoredFormatIds.DECIMAL_TYPE_ID:
146:                    // Need to have space for '-' and decimal point.
147:                    return dts.getPrecision() + 2;
148:
149:                case StoredFormatIds.DOUBLE_TYPE_ID:
150:                    return TypeCompiler.DOUBLE_MAXWIDTH_AS_CHAR;
151:
152:                case StoredFormatIds.INT_TYPE_ID:
153:                    return TypeCompiler.INT_MAXWIDTH_AS_CHAR;
154:
155:                case StoredFormatIds.LONGINT_TYPE_ID:
156:                    return TypeCompiler.LONGINT_MAXWIDTH_AS_CHAR;
157:
158:                case StoredFormatIds.REAL_TYPE_ID:
159:                    return TypeCompiler.REAL_MAXWIDTH_AS_CHAR;
160:
161:                case StoredFormatIds.SMALLINT_TYPE_ID:
162:                    return TypeCompiler.SMALLINT_MAXWIDTH_AS_CHAR;
163:
164:                case StoredFormatIds.TINYINT_TYPE_ID:
165:                    return TypeCompiler.TINYINT_MAXWIDTH_AS_CHAR;
166:
167:                default:
168:                    if (SanityManager.DEBUG) {
169:                        SanityManager
170:                                .THROWASSERT("unexpected formatId in getCastToCharWidth() - "
171:                                        + formatId);
172:                    }
173:                    return 0;
174:                }
175:            }
176:
177:            /**
178:             * @see TypeCompiler#resolveArithmeticOperation
179:             *
180:             * @exception StandardException		Thrown on error
181:             */
182:            public DataTypeDescriptor resolveArithmeticOperation(
183:                    DataTypeDescriptor leftType, DataTypeDescriptor rightType,
184:                    String operator) throws StandardException {
185:                NumericTypeCompiler higherTC;
186:                DataTypeDescriptor higherType;
187:                boolean nullable;
188:                int precision, scale, maximumWidth;
189:
190:                /*
191:                 ** Check the right type to be sure it's a number.  By convention,
192:                 ** we call this method off the TypeId of the left operand, so if
193:                 ** we get here, we know the left operand is a number.
194:                 */
195:                if (SanityManager.DEBUG)
196:                    SanityManager
197:                            .ASSERT(
198:                                    leftType.getTypeId().isNumericTypeId(),
199:                                    "The left type is supposed to be a number because we're resolving an arithmetic operator");
200:
201:                TypeId leftTypeId = leftType.getTypeId();
202:                TypeId rightTypeId = rightType.getTypeId();
203:
204:                boolean supported = true;
205:
206:                if (!(rightTypeId.isNumericTypeId())) {
207:                    supported = false;
208:                }
209:
210:                if (TypeCompiler.MOD_OP.equals(operator)) {
211:                    switch (leftTypeId.getJDBCTypeId()) {
212:                    case java.sql.Types.TINYINT:
213:                    case java.sql.Types.SMALLINT:
214:                    case java.sql.Types.INTEGER:
215:                    case java.sql.Types.BIGINT:
216:                        break;
217:                    default:
218:                        supported = false;
219:                        break;
220:                    }
221:                    switch (rightTypeId.getJDBCTypeId()) {
222:                    case java.sql.Types.TINYINT:
223:                    case java.sql.Types.SMALLINT:
224:                    case java.sql.Types.INTEGER:
225:                    case java.sql.Types.BIGINT:
226:                        break;
227:                    default:
228:                        supported = false;
229:                        break;
230:                    }
231:
232:                }
233:
234:                if (!supported) {
235:                    throw StandardException.newException(
236:                            SQLState.LANG_BINARY_OPERATOR_NOT_SUPPORTED,
237:                            operator, leftType.getTypeId().getSQLTypeName(),
238:                            rightType.getTypeId().getSQLTypeName());
239:                }
240:
241:                /*
242:                 ** Take left as the higher precedence if equal
243:                 */
244:                if (rightTypeId.typePrecedence() > leftTypeId.typePrecedence()) {
245:                    higherType = rightType;
246:                    higherTC = (NumericTypeCompiler) getTypeCompiler(rightTypeId);
247:                } else {
248:                    higherType = leftType;
249:                    higherTC = (NumericTypeCompiler) getTypeCompiler(leftTypeId);
250:                }
251:
252:                /* The calculation of precision and scale should be based upon
253:                 * the type with higher precedence, which is going to be the result
254:                 * type, this is also to be consistent with maximumWidth.  Beetle 3906.
255:                 */
256:                precision = higherTC
257:                        .getPrecision(operator, leftType, rightType);
258:                scale = higherTC.getScale(operator, leftType, rightType);
259:
260:                if (higherType.getTypeId().isDecimalTypeId()) {
261:                    maximumWidth = (scale > 0) ? precision + 3 : precision + 1;
262:
263:                    /*
264:                     ** Be careful not to overflow
265:                     */
266:                    if (maximumWidth < precision) {
267:                        maximumWidth = Integer.MAX_VALUE;
268:                    }
269:                } else {
270:                    maximumWidth = higherType.getMaximumWidth();
271:                }
272:
273:                /* The result is nullable if either side is nullable */
274:                nullable = leftType.isNullable() || rightType.isNullable();
275:
276:                /*
277:                 ** The higher type does not have the right nullability.  Create a
278:                 ** new DataTypeDescriptor that has the correct type and nullability.
279:                 **
280:                 ** It's OK to call the implementation of the DataTypeDescriptorFactory
281:                 ** here, because we're in the same package.
282:                 */
283:                return new DataTypeDescriptor(higherType.getTypeId(),
284:                        precision, scale, nullable, maximumWidth);
285:            }
286:
287:            /** @see TypeCompiler#comparable */
288:            public boolean comparable(TypeId otherType, boolean forEquals,
289:                    ClassFactory cf) {
290:                return numberComparable(otherType, forEquals, cf);
291:            }
292:
293:            /** @see TypeCompiler#convertible */
294:            public boolean convertible(TypeId otherType,
295:                    boolean forDataTypeFunction) {
296:                return (numberConvertible(otherType, forDataTypeFunction));
297:
298:            }
299:
300:            /**
301:             * Tell whether this type (numeric) is compatible with the given type.
302:             *
303:             * @param otherType     The TypeId of the other type.
304:             */
305:            public boolean compatible(TypeId otherType) {
306:                // Numbers can only be compatible with other numbers.
307:                return (otherType.isNumericTypeId());
308:            }
309:
310:            /** @see TypeCompiler#storable */
311:            public boolean storable(TypeId otherType, ClassFactory cf) {
312:                return numberStorable(getTypeId(), otherType, cf);
313:            }
314:
315:            /**
316:            	Return the method name to get a Derby DataValueDescriptor
317:            	object of the correct type. This implementation returns "getDataValue".
318:             */
319:            protected String dataValueMethodName() {
320:                if (getStoredFormatIdFromTypeId() == StoredFormatIds.DECIMAL_TYPE_ID)
321:                    return "getDecimalDataValue";
322:                else
323:                    return super .dataValueMethodName();
324:            }
325:
326:            protected String nullMethodName() {
327:                int formatId = getStoredFormatIdFromTypeId();
328:                switch (formatId) {
329:                case StoredFormatIds.DECIMAL_TYPE_ID:
330:                    return "getNullDecimal";
331:
332:                case StoredFormatIds.DOUBLE_TYPE_ID:
333:                    return "getNullDouble";
334:
335:                case StoredFormatIds.INT_TYPE_ID:
336:                    return "getNullInteger";
337:
338:                case StoredFormatIds.LONGINT_TYPE_ID:
339:                    return "getNullLong";
340:
341:                case StoredFormatIds.REAL_TYPE_ID:
342:                    return "getNullFloat";
343:
344:                case StoredFormatIds.SMALLINT_TYPE_ID:
345:                    return "getNullShort";
346:
347:                case StoredFormatIds.TINYINT_TYPE_ID:
348:                    return "getNullByte";
349:
350:                default:
351:                    if (SanityManager.DEBUG) {
352:                        SanityManager
353:                                .THROWASSERT("unexpected formatId in nullMethodName() - "
354:                                        + formatId);
355:                    }
356:                    return null;
357:                }
358:            }
359:
360:            /**
361:             * Get the precision of the operation involving
362:             * two of the same types.  Only meaningful for
363:             * decimals, which override this.
364:             *
365:             * @param operator a string representing the operator,
366:             *		null means no operator, just a type merge
367:             * @param leftType the left type
368:             * @param rightType the left type
369:             *
370:             * @return	the resultant precision
371:             */
372:            private int getPrecision(String operator,
373:                    DataTypeDescriptor leftType, DataTypeDescriptor rightType) {
374:                // Only meaningful for decimal
375:                if (getStoredFormatIdFromTypeId() != StoredFormatIds.DECIMAL_TYPE_ID) {
376:                    return leftType.getPrecision();
377:                }
378:
379:                long lscale = (long) leftType.getScale();
380:                long rscale = (long) rightType.getScale();
381:                long lprec = (long) leftType.getPrecision();
382:                long rprec = (long) rightType.getPrecision();
383:                long val;
384:
385:                /*
386:                 ** Null means datatype merge.  Take the maximum
387:                 ** left of decimal digits plus the scale.
388:                 */
389:                if (operator == null) {
390:                    val = this .getScale(operator, leftType, rightType)
391:                            + Math.max(lprec - lscale, rprec - rscale);
392:                } else if (operator.equals(TypeCompiler.TIMES_OP)) {
393:                    val = lprec + rprec;
394:                } else if (operator.equals(TypeCompiler.SUM_OP)) {
395:                    val = lprec - lscale + rprec - rscale
396:                            + this .getScale(operator, leftType, rightType);
397:                } else if (operator.equals(TypeCompiler.DIVIDE_OP)) {
398:                    val = Math.min(NumberDataValue.MAX_DECIMAL_PRECISION_SCALE,
399:                            this .getScale(operator, leftType, rightType)
400:                                    + lprec - lscale + rprec);
401:                }
402:                /*
403:                 ** AVG, -, +
404:                 */
405:                else {
406:                    /*
407:                     ** Take max scale and max left of decimal
408:                     ** plus one.
409:                     */
410:                    val = this .getScale(operator, leftType, rightType)
411:                            + Math.max(lprec - lscale, rprec - rscale) + 1;
412:
413:                    if (val > Limits.DB2_MAX_DECIMAL_PRECISION_SCALE)
414:                        // then, like DB2, just set it to the max possible.
415:                        val = Limits.DB2_MAX_DECIMAL_PRECISION_SCALE;
416:                }
417:
418:                if (val > Integer.MAX_VALUE) {
419:                    val = Integer.MAX_VALUE;
420:                }
421:                val = Math
422:                        .min(NumberDataValue.MAX_DECIMAL_PRECISION_SCALE, val);
423:                return (int) val;
424:            }
425:
426:            /**
427:             * Get the scale of the operation involving
428:             * two of the same types.  Since we don't really
429:             * have a good way to pass the resultant scale
430:             * and precision around at execution time, we
431:             * will model that BigDecimal does by default.
432:             * This is good in most cases, though we would
433:             * probably like to use something more sophisticated
434:             * for division.
435:             *
436:             * @param operator a string representing the operator,
437:             *		null means no operator, just a type merge
438:             * @param leftType the left type
439:             * @param rightType the left type
440:             *
441:             * @return	the resultant precision
442:             */
443:            private int getScale(String operator, DataTypeDescriptor leftType,
444:                    DataTypeDescriptor rightType) {
445:                // Only meaningful for decimal
446:                if (getStoredFormatIdFromTypeId() != StoredFormatIds.DECIMAL_TYPE_ID) {
447:                    return leftType.getScale();
448:                }
449:
450:                long val;
451:
452:                long lscale = (long) leftType.getScale();
453:                long rscale = (long) rightType.getScale();
454:                long lprec = (long) leftType.getPrecision();
455:                long rprec = (long) rightType.getPrecision();
456:
457:                /*
458:                 ** Retain greatest scale, take sum of left
459:                 ** of decimal
460:                 */
461:                if (TypeCompiler.TIMES_OP.equals(operator)) {
462:                    val = lscale + rscale;
463:                } else if (TypeCompiler.DIVIDE_OP.equals(operator)) {
464:                    /*
465:                     ** Take max left scale + right precision - right scale + 1, 
466:                     ** or 4, whichever is biggest 
467:                     */
468:                    LanguageConnectionContext lcc = (LanguageConnectionContext) (ContextService
469:                            .getContext(LanguageConnectionContext.CONTEXT_ID));
470:
471:                    // Scale: 31 - left precision + left scale - right scale
472:                    val = Math.max(NumberDataValue.MAX_DECIMAL_PRECISION_SCALE
473:                            - lprec + lscale - rscale, 0);
474:
475:                } else if (TypeCompiler.AVG_OP.equals(operator)) {
476:                    val = Math.max(Math.max(lscale, rscale),
477:                            NumberDataValue.MIN_DECIMAL_DIVIDE_SCALE);
478:                }
479:                /*
480:                 ** SUM, -, + all take max(lscale,rscale)
481:                 */
482:                else {
483:                    val = Math.max(lscale, rscale);
484:                }
485:
486:                if (val > Integer.MAX_VALUE) {
487:                    val = Integer.MAX_VALUE;
488:                }
489:                val = Math
490:                        .min(NumberDataValue.MAX_DECIMAL_PRECISION_SCALE, val);
491:                return (int) val;
492:            }
493:
494:            public void generateDataValue(MethodBuilder mb, LocalField field) {
495:                if (!JVMInfo.J2ME && getTypeId().isDecimalTypeId()) {
496:                    // cast the value to a Number (from BigDecimal) for method resolution
497:                    // For J2ME there is no implementation of Number for DECIMAL
498:                    // so values are handled as thier original type, which is just
499:                    // a String for DECIMAL constants from the parser.
500:                    mb.upCast("java.lang.Number");
501:                }
502:
503:                super.generateDataValue(mb, field);
504:            }
505:
506:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.