Source Code Cross Referenced for SkyDome.java in  » 6.0-JDK-Modules » java-3d » org » jdesktop » j3dfly » utils » environment » geometry » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » java 3d » org.jdesktop.j3dfly.utils.environment.geometry 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *  $Header: /cvs/j3dfly/J3dFly/src/org/jdesktop/j3dfly/utils/environment/geometry/SkyDome.java,v 1.1 2005/04/20 21:04:55 paulby Exp $
003:         *
004:         *                         Sun Public License Notice
005:         *
006:         *  The contents of this file are subject to the Sun Public License Version
007:         *  1.0 (the "License"). You may not use this file except in compliance with
008:         *  the License. A copy of the License is available at http://www.sun.com/
009:         *  
010:         *  The Original Code is Java 3D(tm) Fly Through.
011:         *  The Initial Developer of the Original Code is Paul Byrne.
012:         *  Portions created by Paul Byrne are Copyright (C) 2002.
013:         *  All Rights Reserved.
014:         *  
015:         *  Contributor(s): Paul Byrne.
016:         *  
017:         **/
018:        package org.jdesktop.j3dfly.utils.environment.geometry;
019:
020:        import java.util.*;
021:        import javax.media.j3d.*;
022:        import javax.vecmath.*;
023:        import java.math.*;
024:        import java.awt.Color;
025:
026:        /**
027:         */
028:
029:        public class SkyDome extends Primitive {
030:
031:            /**
032:             * Sphere shape identifier, used by <code>getShape</code>.
033:             *
034:             * @see Sphere#getShape
035:             */
036:            public static final int BODY = 0;
037:
038:            float radius;
039:            int divisions;
040:            double zAngleStart;
041:            double zAngleEnd;
042:            double yAngleStart;
043:            double yAngleEnd;
044:
045:            private float darkness;
046:            private Shape3D skyShape;
047:
048:            private TriangleStripArray skyGeom;
049:
050:            private float[] skyRGB; // RGB values for entire sky
051:
052:            private Color3f skyColor = null;
053:
054:            /**
055:             * Obtains Sphere's shape node that contains the geometry.
056:             * This allows users to modify the appearance or geometry.
057:             * @param partId The part to return (must be BODY for Spheres)
058:             * @return The Shape3D object associated with the partId.  If an
059:             * invalid partId is passed in, null is returned.
060:             */
061:            public Shape3D getShape(int partId) {
062:                if (partId != BODY)
063:                    return null;
064:                return skyShape;
065:            }
066:
067:            /** Obtains Sphere's shape node that contains the geometry.
068:             */
069:            public Shape3D getShape() {
070:                return skyShape;
071:            }
072:
073:            /** Sets appearance of the Sphere.
074:             */
075:            public void setAppearance(Appearance ap) {
076:                skyShape.setAppearance(ap);
077:            }
078:
079:            /**  
080:             *   Constructs a customized SphereSegment of a given radius with
081:             *   with the specified start and stop angles from the z and y axis, 
082:             *   number of divisions, and appearance, with additional parameters
083:             *   specified by the Primitive flags.  The resolution is defined in
084:             *   terms of number of subdivisions along the sphere's axes. More
085:             *   divisions lead to more finely tesselated objects. 
086:             *   <p>
087:             *   If the appearance is null, the sphere segment defaults to a white appearance.
088:             */
089:            public SkyDome(double yAngleStart, int divisions, Appearance ap) {
090:                super ();
091:
092:                PolygonAttributes poly = new PolygonAttributes();
093:                //poly.setPolygonMode( PolygonAttributes.POLYGON_LINE );
094:                poly.setCullFace(PolygonAttributes.CULL_NONE);
095:                ap.setPolygonAttributes(poly);
096:
097:                int primflags = GENERATE_NORMALS_INWARD
098:                        | GeomBuffer.GENERATE_COLOR_3;
099:
100:                this .zAngleStart = 0;
101:                this .zAngleEnd = Math.PI * 2;
102:
103:                this .yAngleStart = yAngleStart;
104:                this .yAngleEnd = Math.PI;
105:
106:                double rho, drho, theta, dtheta;
107:                double vx, vy, vz;
108:                double s, t, ds, dt;
109:                int i, j;
110:                double sign;
111:
112:                this .radius = 1f;
113:                this .divisions = divisions;
114:
115:                Color startColor = new Color(154, 210, 244);
116:                Color endColor = new Color(65, 145, 255);
117:
118:                //Color startColor = new Color( 255, 0, 0 );
119:                //Color endColor = new Color( 0, 255, 0 );
120:
121:                Color3f skyColor = new Color3f(endColor.getRed() / 255f,
122:                        endColor.getGreen() / 255f, endColor.getBlue() / 255f);
123:
124:                float[] startRGB = startColor.getRGBComponents(null);
125:                float[] endRGB = endColor.getRGBComponents(null);
126:
127:                int colorSteps = 5;
128:
129:                float[] colorChange = new float[] {
130:                        (startRGB[0] - endRGB[0]) / (float) colorSteps,
131:                        (startRGB[1] - endRGB[1]) / (float) colorSteps,
132:                        (startRGB[2] - endRGB[2]) / (float) colorSteps };
133:
134:                float[] currentRGB = startColor.getRGBComponents(null);
135:
136:                /* 
137:                 *     The sphere algorithm evaluates spherical angles along regular
138:                 * units. For each spherical coordinate, (theta, rho), a (x,y,z) is
139:                 * evaluated (along with the normals and texture coordinates).
140:                 * 
141:                 *       The spherical angles theta varies from 0 to 2pi and rho from 0
142:                 * to pi. Sample points depends on the number of divisions.
143:                 */
144:
145:                flags = primflags;
146:
147:                //Depending on whether normal inward bit is set.
148:                if ((flags & GENERATE_NORMALS_INWARD) != 0)
149:                    sign = -1.0;
150:                else
151:                    sign = 1.0;
152:
153:                // delta theta and delta rho depends on divsions.
154:                /*
155:                dtheta = 2.0 * Math.PI / (double) divisions;
156:                drho = Math.PI / (double) divisions;
157:                 */
158:                dtheta = Math.abs(zAngleEnd - zAngleStart) / (double) divisions;
159:                drho = Math.abs(yAngleEnd - yAngleStart) / (double) divisions;
160:
161:                t = 0.0;
162:                ds = 1.0 / divisions;
163:                dt = 1.0 / divisions;
164:
165:                // Create a geometry buffer with given number points allocated.    
166:                GeomBuffer gbuf = new GeomBuffer(divisions * (divisions + 1)
167:                        * 2);
168:
169:                for (i = divisions; i > 0; i--) {
170:                    rho = yAngleEnd - ((double) i * drho);
171:                    gbuf.begin(GeomBuffer.QUAD_STRIP);
172:                    s = 0.0;
173:                    for (j = 0; j <= divisions; j++) {
174:
175:                        // Takes care of boundary case.
176:                        if (j == divisions)
177:                            theta = zAngleStart;
178:                        else
179:                            theta = zAngleStart + ((double) j) * dtheta;
180:
181:                        // First quad vertex.
182:                        // Evaluate spherical coords to get unit sphere positions. 
183:
184:                        vz = -Math.sin(theta) * Math.sin(rho);
185:                        vx = Math.cos(theta) * Math.sin(rho);
186:                        vy = Math.cos(rho);
187:
188:                        // Send to buffer.
189:                        gbuf.normal3d(vx * sign, vy * sign, vz * sign);
190:                        gbuf.texCoord2d(s, t + dt);
191:                        gbuf.color3f(currentRGB[0], currentRGB[1],
192:                                currentRGB[2]);
193:                        gbuf.vertex3d(vx * radius, vy * radius, vz * radius);
194:
195:                        // Second quad vertex.
196:                        vz = -Math.sin(theta) * Math.sin(rho + drho);
197:                        vx = Math.cos(theta) * Math.sin(rho + drho);
198:                        vy = Math.cos(rho + drho);
199:
200:                        // Send to Buffer
201:                        gbuf.normal3d(vx * sign, vy * sign, vz * sign);
202:                        gbuf.texCoord2d(s, t);
203:                        gbuf.color3f(currentRGB[0] - colorChange[0],
204:                                currentRGB[1] - colorChange[1], currentRGB[2]
205:                                        - colorChange[2]);
206:                        gbuf.vertex3d(vx * radius, vy * radius, vz * radius);
207:
208:                        // increment s
209:                        s += ds;
210:                    }
211:
212:                    if (i > divisions - colorSteps) {
213:                        currentRGB[0] -= colorChange[0];
214:                        currentRGB[1] -= colorChange[1];
215:                        currentRGB[2] -= colorChange[2];
216:                    } else if (i == divisions - colorSteps) {
217:                        currentRGB[0] -= colorChange[0];
218:                        currentRGB[1] -= colorChange[1];
219:                        currentRGB[2] -= colorChange[2];
220:
221:                        colorChange[0] = currentRGB[0] - skyColor.x;
222:                        colorChange[1] = currentRGB[1] - skyColor.y;
223:                        colorChange[2] = currentRGB[2] - skyColor.z;
224:                    } else if (i == divisions - colorSteps - 1) {
225:                        colorChange[0] = 0f;
226:                        colorChange[1] = 0f;
227:                        colorChange[2] = 0f;
228:
229:                        currentRGB[0] = skyColor.x;
230:                        currentRGB[1] = skyColor.y;
231:                        currentRGB[2] = skyColor.z;
232:                    }
233:                    gbuf.end();
234:                    t += dt;
235:
236:                }
237:
238:                skyGeom = (TriangleStripArray) gbuf.getGeom(flags);
239:                skyGeom.setCapability(TriangleStripArray.ALLOW_COLOR_WRITE);
240:
241:                skyRGB = new float[skyGeom.getVertexCount() * 3];
242:                skyGeom.getColors(0, skyRGB);
243:
244:                skyShape = new Shape3D(skyGeom);
245:                numVerts = gbuf.getNumVerts();
246:                numTris = gbuf.getNumTris();
247:
248:                if ((flags & ENABLE_APPEARANCE_MODIFY) != 0) {
249:                    skyShape.setCapability(Shape3D.ALLOW_APPEARANCE_READ);
250:                    skyShape.setCapability(Shape3D.ALLOW_APPEARANCE_WRITE);
251:                }
252:
253:                this .addChild(skyShape);
254:
255:                if (ap == null) {
256:                    setAppearance();
257:                } else {
258:                    setAppearance(ap);
259:                }
260:            }
261:
262:            /**
263:             * Darken sky - factor 0 is black
264:             *              factor 1 is daylight
265:             */
266:            public void setDarkness(float factor) {
267:                darkness = factor;
268:                float[] newColor = new float[skyRGB.length];
269:                for (int i = 0; i < skyRGB.length; i++) {
270:                    newColor[i] = skyRGB[i] * factor;
271:                }
272:
273:                skyGeom.setColors(0, newColor);
274:            }
275:
276:            public float getDarkness() {
277:                return darkness;
278:            }
279:
280:            /**
281:             * Used to create a new instance of the node.  This routine is called
282:             * by <code>cloneTree</code> to duplicate the current node.
283:             * <code>cloneNode</code> should be overridden by any user subclassed
284:             * objects.  All subclasses must have their <code>cloneNode</code>
285:             * method consist of the following lines:
286:             * <P><blockquote><pre>
287:             *     public Node cloneNode(boolean forceDuplicate) {
288:             *         UserSubClass usc = new UserSubClass();
289:             *         usc.duplicateNode(this, forceDuplicate);
290:             *         return usc;
291:             *     }
292:             * </pre></blockquote>
293:             * @param forceDuplicate when set to <code>true</code>, causes the
294:             *  <code>duplicateOnCloneTree</code> flag to be ignored.  When
295:             *  <code>false</code>, the value of each node's
296:             *  <code>duplicateOnCloneTree</code> variable determines whether
297:             *  NodeComponent data is duplicated or copied.
298:             *
299:             * @see Node#cloneTree
300:             * @see Node#duplicateNode
301:             * @see NodeComponent#setDuplicateOnCloneTree
302:             */
303:            public Node cloneNode(boolean forceDuplicate) {
304:                SkyDome s = new SkyDome(yAngleStart, divisions, getAppearance());
305:                s.duplicateNode(this , forceDuplicate);
306:
307:                return s;
308:            }
309:
310:            /**
311:             * Copies all node information from <code>originalNode</code> into
312:             * the current node.  This method is called from the
313:             * <code>cloneNode</code> method which is, in turn, called by the
314:             * <code>cloneTree</code> method.
315:             * <P>
316:             * For any <i>NodeComponent</i> objects
317:             * contained by the object being duplicated, each <i>NodeComponent</i>
318:             * object's <code>duplicateOnCloneTree</code> value is used to determine
319:             * whether the <i>NodeComponent</i> should be duplicated in the new node
320:             * or if just a reference to the current node should be placed in the
321:             * new node.  This flag can be overridden by setting the
322:             * <code>forceDuplicate</code> parameter in the <code>cloneTree</code>
323:             * method to <code>true</code>.
324:             *
325:             * @param originalNode the original node to duplicate.
326:             * @param forceDuplicate when set to <code>true</code>, causes the
327:             *  <code>duplicateOnCloneTree</code> flag to be ignored.  When
328:             *  <code>false</code>, the value of each node's
329:             *  <code>duplicateOnCloneTree</code> variable determines whether
330:             *  NodeComponent data is duplicated or copied.
331:             *
332:             * @see Node#cloneTree
333:             * @see Node#cloneNode
334:             * @see NodeComponent#setDuplicateOnCloneTree
335:             */
336:            public void duplicateNode(Node originalNode, boolean forceDuplicate) {
337:                super.duplicateNode(originalNode, forceDuplicate);
338:            }
339:
340:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.