Source Code Cross Referenced for Stripifier.java in  » 6.0-JDK-Modules » java-3d » com » sun » j3d » utils » geometry » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » java 3d » com.sun.j3d.utils.geometry 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


0001:        /*
0002:         * $RCSfile: Stripifier.java,v $
0003:         *
0004:         * Copyright (c) 2007 Sun Microsystems, Inc. All rights reserved.
0005:         *
0006:         * Redistribution and use in source and binary forms, with or without
0007:         * modification, are permitted provided that the following conditions
0008:         * are met:
0009:         *
0010:         * - Redistribution of source code must retain the above copyright
0011:         *   notice, this list of conditions and the following disclaimer.
0012:         *
0013:         * - Redistribution in binary form must reproduce the above copyright
0014:         *   notice, this list of conditions and the following disclaimer in
0015:         *   the documentation and/or other materials provided with the
0016:         *   distribution.
0017:         *
0018:         * Neither the name of Sun Microsystems, Inc. or the names of
0019:         * contributors may be used to endorse or promote products derived
0020:         * from this software without specific prior written permission.
0021:         *
0022:         * This software is provided "AS IS," without a warranty of any
0023:         * kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
0024:         * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
0025:         * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
0026:         * EXCLUDED. SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL
0027:         * NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF
0028:         * USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS
0029:         * DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
0030:         * ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
0031:         * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
0032:         * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR
0033:         * INABILITY TO USE THIS SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
0034:         * POSSIBILITY OF SUCH DAMAGES.
0035:         *
0036:         * You acknowledge that this software is not designed, licensed or
0037:         * intended for use in the design, construction, operation or
0038:         * maintenance of any nuclear facility.
0039:         *
0040:         * $Revision: 1.4 $
0041:         * $Date: 2007/02/09 17:20:20 $
0042:         * $State: Exp $
0043:         */
0044:
0045:        // ----------------------------------------------------------------------
0046:        //
0047:        // The reference to Fast Industrial Strength Triangulation (FIST) code
0048:        // in this release by Sun Microsystems is related to Sun's rewrite of
0049:        // an early version of FIST. FIST was originally created by Martin
0050:        // Held and Joseph Mitchell at Stony Brook University and is
0051:        // incorporated by Sun under an agreement with The Research Foundation
0052:        // of SUNY (RFSUNY). The current version of FIST is available for
0053:        // commercial use under a license agreement with RFSUNY on behalf of
0054:        // the authors and Stony Brook University.  Please contact the Office
0055:        // of Technology Licensing at Stony Brook, phone 631-632-9009, for
0056:        // licensing information.
0057:        //
0058:        // ----------------------------------------------------------------------
0059:        package com.sun.j3d.utils.geometry;
0060:
0061:        import com.sun.j3d.utils.geometry.GeometryInfo;
0062:        import java.util.LinkedList;
0063:        import java.util.ArrayList;
0064:        import com.sun.j3d.internal.J3dUtilsI18N;
0065:
0066:        /**
0067:         * The Stripifier utility will change the primitive of the GeometryInfo
0068:         * object to Triangle Strips.  The strips are made by analyzing the
0069:         * triangles in the original data and connecting them together.<p>
0070:         * <p>
0071:         * Normal Generation should be performed on the GeometryInfo object
0072:         * <i>before</i> Stripification, for best results.  Example:<p>
0073:         * <p>
0074:         * <pre>
0075:         *   GeometryInfo gi = new GeometryInfo(TRIANGLE_ARRAY);
0076:         *   gi.setCoordinates(coordinateData);
0077:         *
0078:         *   NormalGenerator ng = new NormalGenerator();
0079:         *   ng.generateNormals(gi);
0080:         *
0081:         *   Stripifier st = new Stripifier()
0082:         *   st.stripify(gi);
0083:         *
0084:         *   Shape3D part = new Shape3D();
0085:         *   part.setAppearance(appearance);
0086:         *   part.setGeometry(gi.getGeometryArray());
0087:         *   </pre>
0088:         */
0089:        public class Stripifier {
0090:
0091:            final boolean DEBUG = false;
0092:            final boolean CHECK_ORIENT = false;
0093:
0094:            static final int EMPTY = -1;
0095:
0096:            boolean hasNormals = false;
0097:            boolean hasTextures = false;
0098:            int texSetCount = 0;
0099:            boolean hasColors = false;
0100:            boolean colorStrips = false;
0101:
0102:            StripifierStats stats;
0103:
0104:            int[] numNhbrs;
0105:
0106:            /**
0107:             * Indicates to the stripifier to collect statistics on the data
0108:             */
0109:            public static final int COLLECT_STATS = 0x01;
0110:
0111:            /**
0112:             * Creates the Stripifier object.
0113:             */
0114:            public Stripifier() {
0115:            }
0116:
0117:            /**
0118:             * Creates the Stripifier object.
0119:             * @param flags Flags
0120:             * @since Java 3D 1.2.1
0121:             */
0122:            public Stripifier(int flags) {
0123:                if ((flags & COLLECT_STATS) != 0) {
0124:                    stats = new StripifierStats();
0125:                }
0126:            }
0127:
0128:            /**
0129:             * Converts the geometry contained in the GeometryInfo object into an
0130:             * array of triangle strips.
0131:             */
0132:            public void stripify(GeometryInfo gi) {
0133:                //    	System.out.println("stripify");
0134:                long time = System.currentTimeMillis();
0135:                // setup
0136:                gi.convertToIndexedTriangles();
0137:                gi.forgetOldPrim();
0138:
0139:                // write out the gi object
0140:                //  	System.out.println("write out the object");
0141:                //     	gi.writeObj();
0142:
0143:                Face[] faces = createFaceArray(gi);
0144:                Edge[] edges = createEdgeArray(faces);
0145:                buildAdjacencies(edges, faces);
0146:
0147:                // print out the adjacency information
0148:                if (DEBUG) {
0149:                    for (int i = 0; i < faces.length; i++) {
0150:                        faces[i].printVertices();
0151:                    }
0152:                    System.out.println("");
0153:                    for (int i = 0; i < faces.length; i++) {
0154:                        faces[i].printAdjacency();
0155:                    }
0156:                    System.out.println("");
0157:                }
0158:
0159:                Node[] faceNodes = new Node[faces.length];
0160:                // 	Node[] queue = hybridSearch(faces, faceNodes);
0161:                Node[] queue = dfSearch(faces, faceNodes);
0162:
0163:                // print out the queue
0164:                if (DEBUG) {
0165:                    for (int i = 0; i < queue.length; i++) {
0166:                        queue[i].print();
0167:                    }
0168:                    System.out.println("");
0169:                }
0170:
0171:                // int "pointers" for the numbers of strips and patches from
0172:                // hamiliton
0173:                int[] ns = new int[1];
0174:                int[] np = new int[1];
0175:                ArrayList hamiltons = hamilton(queue, ns, np);
0176:                int numStrips = ns[0];
0177:                int numPatches = np[0];
0178:
0179:                // print out the hamiltonians
0180:                if (DEBUG) {
0181:                    for (int i = 0; i < hamiltons.size(); i++) {
0182:                        System.out.println("Hamiltonian: " + i);
0183:                        ArrayList list = (ArrayList) hamiltons.get(i);
0184:                        for (int j = 0; j < list.size(); j++) {
0185:                            Face face = (Face) list.get(j);
0186:                            face.printVertices();
0187:                        }
0188:                        System.out.println("");
0189:                    }
0190:                }
0191:
0192:                // now make strips out of the hamiltonians
0193:                ArrayList strips = stripe(hamiltons);
0194:
0195:                // print out the strips
0196:                if (DEBUG) {
0197:                    for (int i = 0; i < strips.size(); i++) {
0198:                        System.out.println("Strip: " + i);
0199:                        Istream istream = (Istream) strips.get(i);
0200:                        for (int j = 0; j < istream.length; j++) {
0201:                            System.out.println("vertex: "
0202:                                    + istream.istream[j].index);
0203:                        }
0204:                        System.out.println("");
0205:                    }
0206:                }
0207:
0208:                // concatenate the strips
0209:                concatenate(strips, faces);
0210:
0211:                // print out the new strips
0212:                if (DEBUG) {
0213:                    System.out.println("");
0214:                    System.out.println("concatenated strips: ("
0215:                            + (strips.size()) + ")");
0216:                    System.out.println("");
0217:                    for (int i = 0; i < strips.size(); i++) {
0218:                        System.out.println("Strip: " + i);
0219:                        Istream istream = (Istream) strips.get(i);
0220:                        for (int j = 0; j < istream.length; j++) {
0221:                            System.out.println("vertex: "
0222:                                    + istream.istream[j].index);
0223:                        }
0224:                        System.out.println("");
0225:                    }
0226:                }
0227:
0228:                // put the stripified data into the GeometryInfo object
0229:                putBackData(gi, strips);
0230:
0231:                // 	System.out.println("time: " + (System.currentTimeMillis()-time));
0232:                // 	System.out.println("");
0233:
0234:                // add to stats
0235:                if (stats != null) {
0236:                    stats.updateInfo(System.currentTimeMillis() - time, strips,
0237:                            faces.length);
0238:                }
0239:
0240:                // 	Stat.printInfo();
0241:
0242:                // print out strip count info
0243:                // 	System.out.println("numStrips = " + strips.size());
0244:                // 	System.out.println("stripCounts:");
0245:                // 	int avg = 0;
0246:                // 	for (int i = 0; i < strips.size(); i++) {
0247:                // 	    System.out.print(((Istream)strips.get(i)).length + " ");
0248:                // 	    avg += ((Istream)strips.get(i)).length;
0249:                // 	}
0250:                // 	System.out.println("Avg: " + ((double)avg/(double)strips.size()));
0251:            }
0252:
0253:            /**
0254:             * Prints out statistical information for the stripifier: the number of
0255:             * original triangles, the number of original vertices, the number of
0256:             * strips created, the number of vertices, the total number of triangles,
0257:             * the minimum strip length (in # of tris) the maximum strip length
0258:             * (in number of tris), the average strip length (in # of tris), the
0259:             * average number of vertices per triangle, the total time it took to
0260:             * stripify, and the strip length (how many strips of a given length.
0261:             * The data is cumulative over all the times the stripifier is called
0262:             * until the stats are printed, and then they are reset.
0263:             */
0264:            //     public static void printStats() {
0265:            // // 	stats.toString();
0266:            //     }
0267:            /**
0268:             * Returns the stripifier stats object.
0269:             * @exception IllegalStateException if the Stripfier has not
0270:             * been constructed
0271:             * with the COLLECT_STATS flag
0272:             * @since Java 3D 1.2.1
0273:             */
0274:            public StripifierStats getStripifierStats() {
0275:                if (stats == null) {
0276:                    throw new IllegalStateException(J3dUtilsI18N
0277:                            .getString("Stripifier0"));
0278:                }
0279:                return stats;
0280:            }
0281:
0282:            /**
0283:             * Creates an array of faces from the geometry in the GeometryInfo object.
0284:             */
0285:            Face[] createFaceArray(GeometryInfo gi) {
0286:                int[] vertices = gi.getCoordinateIndices();
0287:                int[] normals = gi.getNormalIndices();
0288:
0289:                int[][] textures = null;
0290:                int[] t1 = null;
0291:                int[] t2 = null;
0292:                int[] t3 = null;
0293:                texSetCount = gi.getTexCoordSetCount();
0294:                if (texSetCount > 0) {
0295:                    hasTextures = true;
0296:                    textures = new int[texSetCount][];
0297:                    for (int i = 0; i < texSetCount; i++) {
0298:                        textures[i] = gi.getTextureCoordinateIndices(i);
0299:                    }
0300:                    t1 = new int[texSetCount];
0301:                    t2 = new int[texSetCount];
0302:                    t3 = new int[texSetCount];
0303:                } else
0304:                    hasTextures = false;
0305:
0306:                int[] colors = gi.getColorIndices();
0307:                Face[] faces = new Face[vertices.length / 3];
0308:                int n1, n2, n3, c1, c2, c3;
0309:                Vertex v1, v2, v3;
0310:                int count = 0;
0311:                for (int i = 0; i < vertices.length;) {
0312:                    if (normals != null) {
0313:                        // 		System.out.println("hasNormals");
0314:                        hasNormals = true;
0315:                        n1 = normals[i];
0316:                        n2 = normals[i + 1];
0317:                        n3 = normals[i + 2];
0318:                    } else {
0319:                        // 		System.out.println("doesn't have normals");
0320:                        hasNormals = false;
0321:                        n1 = EMPTY;
0322:                        n2 = EMPTY;
0323:                        n3 = EMPTY;
0324:                    }
0325:                    if (hasTextures) {
0326:                        for (int j = 0; j < texSetCount; j++) {
0327:                            t1[j] = textures[j][i];
0328:                            t2[j] = textures[j][(i + 1)];
0329:                            t3[j] = textures[j][(i + 2)];
0330:                        }
0331:                    }
0332:                    if (colors != null) {
0333:                        hasColors = true;
0334:                        c1 = colors[i];
0335:                        c2 = colors[i + 1];
0336:                        c3 = colors[i + 2];
0337:                    } else {
0338:                        hasColors = false;
0339:                        c1 = EMPTY;
0340:                        c2 = EMPTY;
0341:                        c3 = EMPTY;
0342:                    }
0343:                    v1 = new Vertex(vertices[i], n1, texSetCount, t1, c1);
0344:                    v2 = new Vertex(vertices[i + 1], n2, texSetCount, t2, c2);
0345:                    v3 = new Vertex(vertices[i + 2], n3, texSetCount, t3, c3);
0346:                    if (!v1.equals(v2) && !v2.equals(v3) && !v3.equals(v1)) {
0347:                        faces[count] = new Face(count, v1, v2, v3);
0348:                        count++;
0349:                    }
0350:                    i += 3;
0351:                }
0352:
0353:                if (faces.length > count) {
0354:                    Face[] temp = faces;
0355:                    faces = new Face[count];
0356:                    System.arraycopy(temp, 0, faces, 0, count);
0357:                }
0358:                return faces;
0359:            }
0360:
0361:            /**
0362:             * Creates an array of edges from the Face array.
0363:             */
0364:            Edge[] createEdgeArray(Face[] faces) {
0365:                Edge[] edges = new Edge[faces.length * 3];
0366:                Face face;
0367:                for (int i = 0; i < faces.length; i++) {
0368:                    face = faces[i];
0369:                    edges[i * 3] = new Edge(face.verts[0], face.verts[1],
0370:                            face.key);
0371:                    edges[i * 3 + 1] = new Edge(face.verts[1], face.verts[2],
0372:                            face.key);
0373:                    edges[i * 3 + 2] = new Edge(face.verts[2], face.verts[0],
0374:                            face.key);
0375:                }
0376:                return edges;
0377:            }
0378:
0379:            /**
0380:             * Builds the adjacency graph by finding the neighbors of the edges
0381:             */
0382:            void buildAdjacencies(Edge[] edges, Face[] faces) {
0383:                // 	sortEdges(edges);
0384:                quickSortEdges(edges, 0, edges.length - 1);
0385:                // 	int i = 1;
0386:
0387:                // set up the edge list of each face
0388:                Edge edge;
0389:                Face face;
0390:                Vertex[] verts;
0391:                boolean flag;
0392:                int k;
0393:                for (int i = 0; i < edges.length; i++) {
0394:                    // edges are kept in order s.t. the ith edge is the opposite
0395:                    // edge of the ith vertex
0396:                    edge = edges[i];
0397:                    face = faces[edge.face];
0398:                    verts = face.verts;
0399:
0400:                    flag = true;
0401:                    if ((!verts[0].equals(edge.v1))
0402:                            && (!verts[0].equals(edge.v2))) {
0403:                        face.edges[0] = edge;
0404:                        face.numNhbrs--;
0405:                        flag = false;
0406:                    } else if ((!verts[1].equals(edge.v1))
0407:                            && (!verts[1].equals(edge.v2))) {
0408:                        face.edges[1] = edge;
0409:                        face.numNhbrs--;
0410:                        flag = false;
0411:                    } else if ((!verts[2].equals(edge.v1))
0412:                            && (!verts[2].equals(edge.v2))) {
0413:                        face.edges[2] = edge;
0414:                        face.numNhbrs--;
0415:                        flag = false;
0416:                    } else {
0417:                        if (DEBUG)
0418:                            System.out.println("error!!!  Stripifier.buildAdj");
0419:                    }
0420:
0421:                    // handle degenerencies
0422:                    if (flag) {
0423:                        Vertex i1;
0424:                        // triangle degenerated to a point
0425:                        if ((edge.v1).equals(edge.v2)) {
0426:                            face.edges[--face.numNhbrs] = edge;
0427:                        }
0428:                        // triangle degenerated to an edge
0429:                        else {
0430:                            if (verts[0].equals(verts[1])) {
0431:                                i1 = verts[1];
0432:                            } else {
0433:                                i1 = verts[2];
0434:                            }
0435:                            if (verts[0].equals(i1) && face.edges[0] == null) {
0436:                                face.edges[0] = edge;
0437:                                face.numNhbrs--;
0438:                            } else if (verts[1].equals(i1)
0439:                                    && face.edges[1] == null) {
0440:                                face.edges[1] = edge;
0441:                                face.numNhbrs--;
0442:                            } else {
0443:                                face.edges[2] = edge;
0444:                                face.numNhbrs--;
0445:                            }
0446:                        }
0447:                    }
0448:                }
0449:
0450:                // build the adjacency information by pairing up every two triangles
0451:                // that share the same edge
0452:                int i = 0;
0453:                int j = 0;
0454:                int j1, j2;
0455:                while (i < (edges.length - 1)) {
0456:                    j = i + 1;
0457:                    if (edges[i].equals(edges[j])) {
0458:                        // determine the orientations of the common edge in the two
0459:                        // adjacent triangles.  Only set them to be adjacent if they
0460:                        // are opposite
0461:                        j1 = edges[i].face;
0462:                        j2 = edges[j].face;
0463:                        if (j1 != j2) { // set up the two faces as neighbors
0464:                            edge = edges[i];
0465:                            face = faces[j1];
0466:                            k = face.getEdgeIndex(edge);
0467:                            if ((edge.v1.equals(face.verts[(k + 1) % 3]))
0468:                                    && (edge.v2.equals(face.verts[(k + 2) % 3]))) {
0469:                                flag = false;
0470:                            } else
0471:                                flag = true;
0472:
0473:                            edge = edges[j];
0474:                            face = faces[j2];
0475:                            k = face.getEdgeIndex(edge);
0476:                            if ((edge.v1.equals(face.verts[(k + 1) % 3]))
0477:                                    && (edge.v2.equals(face.verts[(k + 2) % 3]))) {
0478:                                flag = flag;
0479:                            } else
0480:                                flag = (!flag);
0481:
0482:                            if (flag) {
0483:                                edges[i].face = j2;
0484:                                edges[j].face = j1;
0485:                                (faces[j1].numNhbrs)++;
0486:                                (faces[j2].numNhbrs)++;
0487:                                j++;
0488:                            } else
0489:                                edges[i].face = EMPTY;
0490:                        } else
0491:                            edges[i].face = EMPTY;
0492:                    } else
0493:                        edges[i].face = EMPTY;
0494:                    i = j;
0495:                }
0496:                if (i <= (edges.length - 1))
0497:                    edges[i].face = EMPTY;
0498:
0499:                // check, for each face, if it is duplicated.  For a face that
0500:                // neighbors its duplicate in the adjacency graph, it's possible
0501:                // that two or more of its neighbors are the same (the duplicate).
0502:                // This will be corrected to avoid introducing redundant faces
0503:                // later on
0504:
0505:                for (i = 0; i < faces.length; i++) {
0506:                    face = faces[i];
0507:                    if (face.numNhbrs == 3) {
0508:                        if ((j1 = face.edges[1].face) == face.edges[0].face) {
0509:                            face.edges[1].face = EMPTY;
0510:                            face.numNhbrs--;
0511:                            faces[j1].counterEdgeDel(face.edges[1]);
0512:                        }
0513:                        if ((j2 = face.edges[2].face) == face.edges[0].face) {
0514:                            face.edges[2].face = EMPTY;
0515:                            face.numNhbrs--;
0516:                            faces[j2].counterEdgeDel(face.edges[2]);
0517:                        }
0518:                        if ((face.edges[1].face != EMPTY) && (j1 == j2)) {
0519:                            face.edges[2].face = EMPTY;
0520:                            face.numNhbrs--;
0521:                            faces[j1].counterEdgeDel(face.edges[2]);
0522:                        }
0523:                    }
0524:                }
0525:            }
0526:
0527:            /**
0528:             * Sorts the edges using BubbleSort
0529:             */
0530:            void sortEdges(Edge[] edges) {
0531:                int i = edges.length;
0532:                boolean sorted = false;
0533:                Edge temp = null;
0534:                while ((i > 1) && !sorted) {
0535:                    sorted = true;
0536:                    for (int j = 1; j < i; j++) {
0537:                        if (edges[j].lessThan(edges[j - 1])) {
0538:                            temp = edges[j - 1];
0539:                            edges[j - 1] = edges[j];
0540:                            edges[j] = temp;
0541:                            sorted = false;
0542:                        }
0543:                    }
0544:                    i--;
0545:                }
0546:            }
0547:
0548:            /**
0549:             * uses quicksort to sort the edges
0550:             */
0551:            void quickSortEdges(Edge[] edges, int l, int r) {
0552:                if (edges.length > 0) {
0553:                    int i = l;
0554:                    int j = r;
0555:                    Edge k = edges[(l + r) / 2];
0556:
0557:                    do {
0558:                        while (edges[i].lessThan(k))
0559:                            i++;
0560:                        while (k.lessThan(edges[j]))
0561:                            j--;
0562:                        if (i <= j) {
0563:                            Edge tmp = edges[i];
0564:                            edges[i] = edges[j];
0565:                            edges[j] = tmp;
0566:                            i++;
0567:                            j--;
0568:                        }
0569:                    } while (i <= j);
0570:
0571:                    if (l < j)
0572:                        quickSortEdges(edges, l, j);
0573:                    if (l < r)
0574:                        quickSortEdges(edges, i, r);
0575:                }
0576:            }
0577:
0578:            /**
0579:             * Takes a list of faces as input and performs a hybrid search, a
0580:             * variated depth first search that returns to the highest level node
0581:             * not yet fully explored.  Returns an array of pointers to the faces
0582:             * found in order from the search.  The faceNodes parameter is an
0583:             * array of the Nodes created for the faces.
0584:             */
0585:            Node[] hybridSearch(Face[] faces, Node[] faceNodes) {
0586:
0587:                int numFaces = faces.length;
0588:                int i = 0, j = 0, k = 0, ind = 0;
0589:
0590:                // keep # of faces with certain # of neighbors
0591:                int[] count = { 0, 0, 0, 0 };
0592:
0593:                // faces sorted by number of neighbors
0594:                int[] index = new int[numFaces];
0595:                // the index of a certain face in the sorted array
0596:                int[] rindex = new int[numFaces];
0597:
0598:                // Control list pop up operation
0599:                boolean popFlag = false;
0600:
0601:                // queue of pointers to faces found in search
0602:                Node[] queue = new Node[numFaces];
0603:                // root of depth first tree
0604:                Node source;
0605:                // for the next node
0606:                Node nnode;
0607:                // a face
0608:                Face face;
0609:                // starting position for insertion into the list
0610:                int start = 0;
0611:                // list for search
0612:                SortedList dlist;
0613:
0614:                // count how many faces have a certain # of neighbors and
0615:                // create a Node for each face
0616:                for (i = 0; i < numFaces; i++) {
0617:                    j = faces[i].numNhbrs;
0618:                    count[j]++;
0619:                    faceNodes[i] = new Node(faces[i]);
0620:                }
0621:
0622:                // to help with sorting
0623:                for (i = 1; i < 4; i++) {
0624:                    count[i] += count[i - 1];
0625:                }
0626:
0627:                // decreasing i to make sorting stable
0628:                for (i = numFaces - 1; i >= 0; i--) {
0629:                    j = faces[i].numNhbrs;
0630:                    count[j]--;
0631:                    index[count[j]] = i;
0632:                    rindex[i] = count[j];
0633:                }
0634:
0635:                // start the hybrid search
0636:                for (i = 0; i < numFaces; i++) {
0637:                    if (index[i] != EMPTY) {
0638:                        dlist = new SortedList();
0639:                        source = faceNodes[index[i]];
0640:                        source.setRoot();
0641:                        queue[ind] = source;
0642:                        ind++;
0643:                        index[i] = EMPTY;
0644:
0645:                        while (source != null) {
0646:                            nnode = null;
0647:                            // use the first eligible for continuing search
0648:                            face = source.face;
0649:                            for (j = 0; j < 3; j++) {
0650:                                k = face.getNeighbor(j);
0651:                                if ((k != EMPTY)
0652:                                        && (faceNodes[k].notAccessed())) {
0653:                                    nnode = faceNodes[k];
0654:                                    break;
0655:                                }
0656:                            }
0657:
0658:                            if (nnode != null) {
0659:                                // insert the new node
0660:                                nnode.insert(source);
0661:                                if (!popFlag) {
0662:                                    start = dlist.sortedInsert(source, start);
0663:                                } else
0664:                                    popFlag = false;
0665:                                source = nnode;
0666:                                queue[ind] = source;
0667:                                ind++;
0668:                                index[rindex[k]] = EMPTY;
0669:                            } else {
0670:                                source.processed();
0671:                                source = dlist.pop();
0672:                                popFlag = true;
0673:                                start = 0;
0674:                            }
0675:                        } // while -- does popFlag need to be set to false here?
0676:                    }
0677:                }
0678:                return queue;
0679:            }
0680:
0681:            Node[] dfSearch(Face[] faces, Node[] faceNodes) {
0682:                int numFaces = faces.length;
0683:                int i = 0, j = 0, k = 0, ind = 0;
0684:
0685:                // keep certain # of faces with certain # of neighbors
0686:                int[] count = { 0, 0, 0, 0 };
0687:
0688:                // faces sorted by # of neighbors
0689:                int[] index = new int[numFaces];
0690:                // index of a certain face in the sorted array
0691:                int[] rindex = new int[numFaces];
0692:
0693:                // queue of pointers to faces found in the search
0694:                Node[] queue = new Node[numFaces];
0695:                // root of the depth first tree
0696:                Node source;
0697:                // the current node
0698:                Node node;
0699:                // for the next Node
0700:                Node nnode;
0701:                // a face
0702:                Face face;
0703:
0704:                // count how many faces have a certain # of neighbors and create
0705:                // a Node for each face
0706:                for (i = 0; i < numFaces; i++) {
0707:                    j = faces[i].numNhbrs;
0708:                    count[j]++;
0709:                    faceNodes[i] = new Node(faces[i]);
0710:                }
0711:
0712:                // to help with sorting
0713:                for (i = 1; i < 4; i++)
0714:                    count[i] += count[i - 1];
0715:
0716:                // dec i to make sorting stable
0717:                for (i = numFaces - 1; i >= 0; i--) {
0718:                    j = faces[i].numNhbrs;
0719:                    count[j]--;
0720:                    index[count[j]] = i;
0721:                    rindex[i] = count[j];
0722:                }
0723:
0724:                setNumNhbrs(faces);
0725:                // start the dfs
0726:                for (i = 0; i < numFaces; i++) {
0727:                    if (index[i] != EMPTY) {
0728:                        source = faceNodes[index[i]];
0729:                        source.setRoot();
0730:                        queue[ind] = source;
0731:                        ind++;
0732:                        index[i] = EMPTY;
0733:                        node = source;
0734:
0735:                        do {
0736:                            // if source has been done, stop
0737:                            if ((node == source) && (node.right != null))
0738:                                break;
0739:
0740:                            nnode = null;
0741:                            face = node.face;
0742:
0743:                            //  		    for (j = 0; j < 3; j++) {
0744:                            //  			if (((k = face.getNeighbor(j)) != EMPTY) &&
0745:                            //  			    (faceNodes[k].notAccessed())) {
0746:                            //  			    nnode = faceNodes[k];
0747:                            //  			    break;
0748:                            //  			}
0749:                            //  		    }
0750:
0751:                            k = findNext(node, faceNodes, faces);
0752:                            if (k != EMPTY)
0753:                                nnode = faceNodes[k];
0754:                            if (nnode != null)
0755:                                updateNumNhbrs(nnode);
0756:
0757:                            if (nnode != null) {
0758:                                // insert new node
0759:                                nnode.insert(node);
0760:                                node = nnode;
0761:                                queue[ind] = node;
0762:                                ind++;
0763:                                index[rindex[k]] = EMPTY;
0764:                            } else {
0765:                                node.processed();
0766:                                node = node.parent;
0767:                            }
0768:                        } while (node != source.parent);
0769:                    }
0770:                }
0771:                freeNhbrTable();
0772:                return queue;
0773:            }
0774:
0775:            int findNext(Node node, Node[] faceNodes, Face[] faces) {
0776:                Face face = node.face;
0777:                // this face has no neighbors so return
0778:                if (face.numNhbrs == 0)
0779:                    return EMPTY;
0780:
0781:                int i, j, count;
0782:                int[] n = new int[3]; // num neighbors of neighboring face
0783:                int[] ind = { -1, -1, -1 }; // neighboring faces
0784:
0785:                // find the number of neighbors for each neighbor
0786:                count = 0;
0787:                for (i = 0; i < 3; i++) {
0788:                    if (((j = face.getNeighbor(i)) != EMPTY)
0789:                            && (faceNodes[j].notAccessed())) {
0790:                        ind[count] = j;
0791:                        n[count] = numNhbrs[j];
0792:                        count++;
0793:                    }
0794:                }
0795:
0796:                // this face has no not accessed faces
0797:                if (count == 0)
0798:                    return EMPTY;
0799:
0800:                // this face has only one neighbor
0801:                if (count == 1)
0802:                    return ind[0];
0803:
0804:                if (count == 2) {
0805:                    // if the number of neighbors are the same, try reseting
0806:                    if ((n[0] == n[1]) && (n[0] != 0)) {
0807:                        n[0] = resetNhbr(ind[0], faces, faceNodes);
0808:                        n[1] = resetNhbr(ind[1], faces, faceNodes);
0809:                    }
0810:                    // if one neighbor has fewer neighbors, return that neighbor
0811:                    if (n[0] < n[1])
0812:                        return ind[0];
0813:                    if (n[1] < n[0])
0814:                        return ind[1];
0815:                    // neighbors tie.  pick the sequential one
0816:                    Node pnode, ppnode;
0817:                    Face pface, ppface;
0818:                    if ((pnode = node.parent) != null) {
0819:                        pface = pnode.face;
0820:                        i = pface.findSharedEdge(face.key);
0821:                        if ((ppnode = pnode.parent) != null) {
0822:                            ppface = ppnode.face;
0823:                            if (pface.getNeighbor((i + 1) % 3) == ppface.key) {
0824:                                j = pface.verts[(i + 2) % 3].index;
0825:                            } else {
0826:                                j = pface.verts[(i + 1) % 3].index;
0827:                            }
0828:                        } else {
0829:                            j = pface.verts[(i + 1) % 3].index;
0830:                        }
0831:                        i = face.findSharedEdge(ind[0]);
0832:                        if (face.verts[i].index == j)
0833:                            return ind[0];
0834:                        else
0835:                            return ind[1];
0836:                    } else
0837:                        return ind[0];
0838:                }
0839:                // three neighbors
0840:                else {
0841:                    if ((n[0] < n[1]) && (n[0] < n[2]))
0842:                        return ind[0];
0843:                    else if ((n[1] < n[0]) && (n[1] < n[2]))
0844:                        return ind[1];
0845:                    else if ((n[2] < n[0]) && (n[2] < n[1]))
0846:                        return ind[2];
0847:                    else if ((n[0] == n[1]) && (n[0] < n[2])) {
0848:                        if (n[0] != 0) {
0849:                            n[0] = resetNhbr(ind[0], faces, faceNodes);
0850:                            n[1] = resetNhbr(ind[1], faces, faceNodes);
0851:                        }
0852:                        if (n[0] <= n[1])
0853:                            return ind[0];
0854:                        else
0855:                            return ind[1];
0856:                    } else if ((n[1] == n[2]) && n[1] < n[0]) {
0857:                        if (n[1] != 0) {
0858:                            n[1] = resetNhbr(ind[1], faces, faceNodes);
0859:                            n[2] = resetNhbr(ind[2], faces, faceNodes);
0860:                        }
0861:                        if (n[1] <= n[2])
0862:                            return ind[1];
0863:                        else
0864:                            return ind[2];
0865:                    } else if ((n[2] == n[0]) && (n[2] < n[1])) {
0866:                        if (n[0] != 0) {
0867:                            n[0] = resetNhbr(ind[0], faces, faceNodes);
0868:                            n[2] = resetNhbr(ind[2], faces, faceNodes);
0869:                        }
0870:                        if (n[0] <= n[2])
0871:                            return ind[0];
0872:                        else
0873:                            return ind[2];
0874:                    } else {
0875:                        if (n[0] != 0) {
0876:                            n[0] = resetNhbr(ind[0], faces, faceNodes);
0877:                            n[1] = resetNhbr(ind[1], faces, faceNodes);
0878:                            n[2] = resetNhbr(ind[2], faces, faceNodes);
0879:                        }
0880:                        if ((n[0] <= n[1]) && (n[0] <= n[2]))
0881:                            return ind[0];
0882:                        else if (n[1] <= n[2])
0883:                            return ind[1];
0884:                        else
0885:                            return ind[2];
0886:                    }
0887:                }
0888:            }
0889:
0890:            void setNumNhbrs(Face[] faces) {
0891:                int numFaces = faces.length;
0892:                numNhbrs = new int[numFaces];
0893:                for (int i = 0; i < numFaces; i++) {
0894:                    numNhbrs[i] = faces[i].numNhbrs;
0895:                }
0896:            }
0897:
0898:            void freeNhbrTable() {
0899:                numNhbrs = null;
0900:            }
0901:
0902:            void updateNumNhbrs(Node node) {
0903:                Face face = node.face;
0904:                int i;
0905:                if ((i = face.getNeighbor(0)) != EMPTY)
0906:                    numNhbrs[i]--;
0907:                if ((i = face.getNeighbor(1)) != EMPTY)
0908:                    numNhbrs[i]--;
0909:                if ((i = face.getNeighbor(2)) != EMPTY)
0910:                    numNhbrs[i]--;
0911:            }
0912:
0913:            int resetNhbr(int y, Face[] faces, Node[] faceNodes) {
0914:                int x = EMPTY;
0915:                Face nface = faces[y];
0916:                int i;
0917:                for (int j = 0; j < 3; j++) {
0918:                    if (((i = nface.getNeighbor(j)) != EMPTY)
0919:                            && (faceNodes[i].notAccessed())) {
0920:                        if ((x == EMPTY) || (x > numNhbrs[i]))
0921:                            x = numNhbrs[i];
0922:                    }
0923:                }
0924:                return x;
0925:            }
0926:
0927:            /**
0928:             * generates hamiltonian strips from the derived binary spanning tree
0929:             * using the path peeling algorithm to peel off any node wiht double
0930:             * children in a bottom up fashion.  Returns a Vector of strips.  Also
0931:             * return the number of strips and patches in the numStrips and
0932:             * numPatches "pointers"
0933:             */
0934:            ArrayList hamilton(Node[] sTree, int[] numStrips, int[] numPatches) {
0935:                // the number of nodes in the tree
0936:                int numNodes = sTree.length;
0937:                // number of strips
0938:                int ns = 0;
0939:                // number of patches
0940:                int np = 0;
0941:                // some tree node variables
0942:                Node node, pnode, cnode;
0943:                // the Vector of strips
0944:                ArrayList strips = new ArrayList();
0945:                // the current strip
0946:                ArrayList currStrip;
0947:
0948:                // the tree nodes are visited in such a bottom-up fashion that
0949:                // any node is visited prior to its parent
0950:                for (int i = numNodes - 1; i >= 0; i--) {
0951:                    cnode = sTree[i];
0952:
0953:                    // if cnode is the root of a tree create a strip
0954:                    if (cnode.isRoot()) {
0955:                        // each patch is a single tree
0956:                        np++;
0957:                        // create a new strip
0958:                        currStrip = new ArrayList();
0959:                        // insert the current node into the list
0960:                        currStrip.add(0, cnode.face);
0961:
0962:                        // add the left "wing" of the parent node to the strip
0963:                        node = cnode.left;
0964:                        while (node != null) {
0965:                            currStrip.add(0, node.face);
0966:                            node = node.left;
0967:                        }
0968:
0969:                        // add the right "wing" of the parent node to the strip
0970:                        node = cnode.right;
0971:                        while (node != null) {
0972:                            currStrip.add(currStrip.size(), node.face);
0973:                            node = node.left;
0974:                        }
0975:
0976:                        // increase the number of strips
0977:                        ns++;
0978:                        // add the strip to the Vector
0979:                        strips.add(currStrip);
0980:                    }
0981:
0982:                    // if the number of children of this node is 2, create a strip
0983:                    else if (cnode.numChildren == 2) {
0984:                        // if the root has a single child with double children, it
0985:                        // could be left over as a singleton.  However, the following
0986:                        // rearrangement reduces the chances
0987:                        pnode = cnode.parent;
0988:                        if (pnode.isRoot() && (pnode.numChildren == 1)) {
0989:                            pnode = cnode.right;
0990:                            if (pnode.left != null)
0991:                                cnode = pnode;
0992:                            else
0993:                                cnode = cnode.left;
0994:                        }
0995:
0996:                        // handle non-root case
0997:
0998:                        // remove the node
0999:                        cnode.remove();
1000:
1001:                        // create a new strip
1002:                        currStrip = new ArrayList();
1003:                        // insert the current node into the list
1004:                        currStrip.add(0, cnode.face);
1005:
1006:                        // add the left "wing" of cnode to the list
1007:                        node = cnode.left;
1008:                        while (node != null) {
1009:                            currStrip.add(0, node.face);
1010:                            node = node.left;
1011:                        }
1012:
1013:                        // add the right "wing" of cnode to the list
1014:                        node = cnode.right;
1015:                        while (node != null) {
1016:                            currStrip.add(currStrip.size(), node.face);
1017:                            node = node.left;
1018:                        }
1019:
1020:                        // increase the number of strips
1021:                        ns++;
1022:                        // add the strip to the Vector
1023:                        strips.add(currStrip);
1024:                    }
1025:                }
1026:
1027:                // put the ns and np in the "pointers to return
1028:                numStrips[0] = ns;
1029:                numPatches[0] = np;
1030:
1031:                // return the strips
1032:                return strips;
1033:            }
1034:
1035:            /**
1036:             * creates the triangle strips
1037:             */
1038:            ArrayList stripe(ArrayList strips) {
1039:                int numStrips = strips.size(); // the number of strips
1040:                int count; // where we are in the hamiltonian
1041:                Face face; // the face we are adding to the stream
1042:                Face prev; // the previous face added to the stream
1043:                boolean done; // whether we are done with the current strip
1044:                boolean cont; // whether we should continue the current stream
1045:                ArrayList currStrip; // the current hamiltonian
1046:                Istream currStream; // the stream we are building
1047:                ArrayList istreams = new ArrayList(); // the istreams to return
1048:                boolean ccw = true;
1049:                ; // counter-clockwise
1050:                int share; // the shared edge
1051:                Vertex[] buf = new Vertex[4]; // a vertex array to start the stream
1052:
1053:                // create streams for each hamiltonian
1054:                for (int i = 0; i < numStrips; i++) {
1055:                    currStrip = (ArrayList) strips.get(i);
1056:                    count = 0;
1057:                    done = false;
1058:                    face = getNextFace(currStrip, count++);
1059:
1060:                    // while we are not done with the current hamiltonian
1061:                    while (!done) {
1062:                        cont = true;
1063:
1064:                        // if the current face is the only one left in the current
1065:                        // hamiltonian
1066:                        if (stripDone(currStrip, count)) {
1067:                            // create a new istream with the current face
1068:                            currStream = new Istream(face.verts, 3, false);
1069:                            // set the head of the strip to this face
1070:                            currStream.head = face.key;
1071:                            done = true;
1072:                            // since we are done with the strip, set the tail to this
1073:                            // face
1074:                            currStream.tail = face.key;
1075:                        }
1076:
1077:                        else {
1078:                            prev = face;
1079:                            face = getNextFace(currStrip, count++);
1080:
1081:                            // put the prev vertices in the correct order
1082:                            // to add the next tri on
1083:                            share = prev.findSharedEdge(face.key);
1084:                            buf[0] = prev.verts[share];
1085:                            buf[1] = prev.verts[(share + 1) % 3];
1086:                            buf[2] = prev.verts[(share + 2) % 3];
1087:
1088:                            // find the fourth vertex
1089:                            if (CHECK_ORIENT) {
1090:                                // check for clockwise orientation
1091:                                if (checkOrientCWSeq(buf[2], buf[1], face)) {
1092:                                    share = face.findSharedEdge(prev.key);
1093:                                    buf[3] = face.verts[share];
1094:                                    currStream = new Istream(buf, 4, false);
1095:                                    // set the head of this strip to the prev face
1096:                                    currStream.head = prev.key;
1097:                                    // if this was the last tri in the strip, then
1098:                                    // we are done
1099:                                    if (stripDone(currStrip, count)) {
1100:                                        done = true;
1101:                                        // set the tail for the strip to current face
1102:                                        currStream.tail = face.key;
1103:                                    }
1104:                                } else {
1105:                                    cont = false;
1106:                                    currStream = new Istream(buf, 3, false);
1107:                                    // set the head to the prev face
1108:                                    currStream.head = prev.key;
1109:                                    // since we are not continuing, set
1110:                                    // the tail to prev also
1111:                                    currStream.tail = prev.key;
1112:                                }
1113:
1114:                                // orientation starts counter-clockwise for 3rd face
1115:                                ccw = true;
1116:                            } else {
1117:                                share = face.findSharedEdge(prev.key);
1118:                                buf[3] = face.verts[share];
1119:                                currStream = new Istream(buf, 4, false);
1120:                                // set the head of this strip to the prev face
1121:                                currStream.head = prev.key;
1122:                                // if this was the last tri in the strip, then
1123:                                // we are done
1124:                                if (stripDone(currStrip, count)) {
1125:                                    done = true;
1126:                                    // set the tail for the strip to current face
1127:                                    currStream.tail = face.key;
1128:                                }
1129:                            }
1130:
1131:                            // while continue and the strip isn't finished
1132:                            // add more faces to the stream
1133:                            while (cont && !stripDone(currStrip, count)) {
1134:                                prev = face;
1135:                                face = getNextFace(currStrip, count++);
1136:                                share = face.findSharedEdge(prev.key);
1137:
1138:                                // if we can add the face without adding any
1139:                                // zero area triangles
1140:                                if (seq(currStream, face, share)) {
1141:                                    if (CHECK_ORIENT) {
1142:                                        // if we can add the next face with the correct
1143:                                        // orientation
1144:                                        if (orientSeq(ccw, currStream, face)) {
1145:                                            // append the vertex opposite the
1146:                                            //shared edge
1147:                                            currStream
1148:                                                    .append(face.verts[share]);
1149:                                            // next face must have opposite orientation
1150:                                            ccw = (!ccw);
1151:                                            // if this was the last tri in the
1152:                                            //strip, then we are done
1153:                                            if (stripDone(currStrip, count)) {
1154:                                                done = true;
1155:                                                // since we are done with this strip,
1156:                                                // set the tail to the current face
1157:                                                currStream.tail = face.key;
1158:                                            }
1159:                                        }
1160:                                        // if we cannot add the face with the correct
1161:                                        // orientation, do not continue with this
1162:                                        // stream
1163:                                        else {
1164:                                            cont = false;
1165:                                            // since we cannot continue with this strip
1166:                                            // set the tail to prev
1167:                                            currStream.tail = prev.key;
1168:                                        }
1169:                                    } else {
1170:                                        // append the vertex opposite the
1171:                                        //shared edge
1172:                                        currStream.append(face.verts[share]);
1173:                                        // if this was the last tri in the
1174:                                        //strip, then we are done
1175:                                        if (stripDone(currStrip, count)) {
1176:                                            done = true;
1177:                                            // since we are done with this strip,
1178:                                            // set the tail to the current face
1179:                                            currStream.tail = face.key;
1180:                                        }
1181:                                    }
1182:                                }
1183:
1184:                                // need zero area tris to add continue the strip
1185:                                else {
1186:                                    if (CHECK_ORIENT) {
1187:                                        // check the orientation for adding a zero
1188:                                        // area tri and this face
1189:                                        if (orientZAT(ccw, currStream, face)) {
1190:                                            // swap the end of the current stream to
1191:                                            // add a zero area triangle
1192:                                            currStream.swapEnd();
1193:                                            // append the vertex opposite the
1194:                                            // shared edge
1195:                                            currStream
1196:                                                    .append(face.verts[share]);
1197:                                            // if this was the last tri in the
1198:                                            // strip then we are done
1199:                                            if (stripDone(currStrip, count)) {
1200:                                                done = true;
1201:                                                // set the tail because we are done
1202:                                                currStream.tail = face.key;
1203:                                            }
1204:                                        }
1205:                                        // if we cannot add the face with the correct
1206:                                        // orientation, do not continue with this
1207:                                        // stream
1208:                                        else {
1209:                                            cont = false;
1210:                                            // since we cannot continue with this face,
1211:                                            // set the tail to the prev face
1212:                                            currStream.tail = prev.key;
1213:                                        }
1214:                                    } else {
1215:                                        // swap the end of the current stream to
1216:                                        // add a zero area triangle
1217:                                        currStream.swapEnd();
1218:                                        // append the vertex opposite the
1219:                                        // shared edge
1220:                                        currStream.append(face.verts[share]);
1221:                                        // if this was the last tri in the
1222:                                        // strip then we are done
1223:                                        if (stripDone(currStrip, count)) {
1224:                                            done = true;
1225:                                            // set the tail because we are done
1226:                                            currStream.tail = face.key;
1227:                                        }
1228:                                    }
1229:                                }
1230:                            } // while (cont && !stripDone)
1231:                        } // else
1232:
1233:                        // add the current strip to the strips to be returned
1234:                        istreams.add(currStream);
1235:                    } // while !done
1236:                } // for each hamiltonian
1237:                return istreams;
1238:            } // stripe
1239:
1240:            boolean stripDone(ArrayList strip, int count) {
1241:                if (count < strip.size()) {
1242:                    return false;
1243:                } else
1244:                    return true;
1245:            }
1246:
1247:            boolean seq(Istream stream, Face face, int share) {
1248:                int length = stream.length;
1249:                Vertex v1 = face.edges[share].v1;
1250:                Vertex v2 = face.edges[share].v2;
1251:                Vertex last = stream.istream[length - 1];
1252:                Vertex prev = stream.istream[length - 2];
1253:                if (((v1.equals(prev)) && (v2.equals(last)))
1254:                        || ((v1.equals(last)) && (v2.equals(prev)))) {
1255:                    return true;
1256:                } else
1257:                    return false;
1258:            }
1259:
1260:            boolean orientSeq(boolean ccw, Istream stream, Face face) {
1261:                int length = stream.length;
1262:                Vertex last = stream.istream[length - 1];
1263:                Vertex prev = stream.istream[length - 2];
1264:                if ((ccw && checkOrientCCWSeq(last, prev, face))
1265:                        || ((!ccw) && checkOrientCWSeq(last, prev, face))) {
1266:                    return true;
1267:                } else
1268:                    return false;
1269:            }
1270:
1271:            boolean orientZAT(boolean ccw, Istream stream, Face face) {
1272:                int length = stream.length;
1273:                Vertex last = stream.istream[length - 1];
1274:                Vertex swap = stream.istream[length - 3];
1275:                if ((ccw && checkOrientCWSeq(last, swap, face))
1276:                        || ((!ccw) && checkOrientCCWSeq(last, swap, face))) {
1277:                    return true;
1278:                } else
1279:                    return false;
1280:            }
1281:
1282:            boolean checkOrientCWSeq(Vertex last, Vertex prev, Face face) {
1283:                System.out.println("checkOrientCWSeq");
1284:                System.out.println("last = " + last.index);
1285:                System.out.println("prev = " + prev.index);
1286:                System.out.print("face = ");
1287:                face.printVertices();
1288:                if (last.equals(face.verts[0])) {
1289:                    if (!prev.equals(face.verts[1])) {
1290:                        if (DEBUG)
1291:                            System.out.println("ORIENTATION PROBLEM!");
1292:                        return false;
1293:                    }
1294:                } else if (last.equals(face.verts[1])) {
1295:                    if (!prev.equals(face.verts[2])) {
1296:                        if (DEBUG)
1297:                            System.out.println("ORIENTATION PROBLEM!");
1298:                        return false;
1299:                    }
1300:                } else if (last.equals(face.verts[2])) {
1301:                    if (!prev.equals(face.verts[0])) {
1302:                        if (DEBUG)
1303:                            System.out.println("ORIENTATION PROBLEM!");
1304:                        return false;
1305:                    }
1306:                }
1307:                return true;
1308:            }
1309:
1310:            boolean checkOrientCCWSeq(Vertex last, Vertex prev, Face face) {
1311:                System.out.println("checkOrientCCWSeq");
1312:                System.out.println("last = " + last.index);
1313:                System.out.println("prev = " + prev.index);
1314:                System.out.print("face = ");
1315:                face.printVertices();
1316:                if (prev.equals(face.verts[0])) {
1317:                    if (!last.equals(face.verts[1])) {
1318:                        System.out.println("ORIENTATION PROBLEM!");
1319:                        return false;
1320:                    }
1321:                } else if (prev.equals(face.verts[1])) {
1322:                    if (!last.equals(face.verts[2])) {
1323:                        System.out.println("ORIENTATION PROBLEM!");
1324:                        return false;
1325:                    }
1326:                } else if (prev.equals(face.verts[2])) {
1327:                    if (!last.equals(face.verts[0])) {
1328:                        System.out.println("ORIENTATION PROBLEM!");
1329:                        return false;
1330:                    }
1331:                }
1332:                return true;
1333:            }
1334:
1335:            Face getNextFace(ArrayList currStrip, int index) {
1336:                if (currStrip.size() > index)
1337:                    return (Face) currStrip.get(index);
1338:                else
1339:                    return null;
1340:            }
1341:
1342:            /**
1343:             * joins tristrips if their end triangles neighbor each other.  The
1344:             * priority is performed in three stages: strips are concatenated to
1345:             * save 2, 1, or no vertices
1346:             */
1347:            void concatenate(ArrayList strips, Face[] faces) {
1348:                int numFaces = faces.length;
1349:                int[] faceTable = new int[numFaces];
1350:                Istream strm;
1351:
1352:                // initialize the face table to empty
1353:                for (int i = 0; i < numFaces; i++) {
1354:                    faceTable[i] = EMPTY;
1355:                }
1356:
1357:                // set up the faceTable so that a face index relates to a strip
1358:                // that owns the face as one of its end faces
1359:                for (int i = 0; i < strips.size(); i++) {
1360:                    strm = (Istream) strips.get(i);
1361:                    faceTable[strm.head] = i;
1362:                    faceTable[strm.tail] = i;
1363:                }
1364:
1365:                if (DEBUG) {
1366:                    System.out.println("");
1367:                    System.out.println("faceTable:");
1368:                    for (int i = 0; i < faceTable.length; i++) {
1369:                        System.out.println(faceTable[i]);
1370:                    }
1371:                    System.out.println("");
1372:                }
1373:
1374:                reduceCostByTwo(strips, faces, faceTable);
1375:                reduceCostByOne(strips, faces, faceTable);
1376:                reduceCostByZero(strips, faces, faceTable);
1377:            }
1378:
1379:            /**
1380:             * find all the links that reduce the cost by 2
1381:             */
1382:            void reduceCostByTwo(ArrayList strips, Face[] faces, int[] faceTable) {
1383:                //  	System.out.println("reduceCostByTwo");
1384:                // number of faces in the face array
1385:                int numFaces = faces.length;
1386:                // possible adjacent strips
1387:                int id, id1, id2;
1388:                // Istreams
1389:                Istream strm, strm1;
1390:                // the length of the Istrem
1391:                int len, len1;
1392:                // vertex sequences for tristrips
1393:                Vertex[] seq, seq1;
1394:                // a face
1395:                Face face;
1396:                // the list of vertices for the face
1397:                Vertex[] verts;
1398:                // used to syncronize the orientation
1399:                boolean sync, sync1;
1400:                // a swap variable
1401:                Vertex swap;
1402:
1403:                for (int i = 0; i < numFaces; i++) {
1404:                    id = faceTable[i];
1405:                    if (id != EMPTY) {
1406:                        sync = false;
1407:                        sync1 = false;
1408:                        strm = (Istream) strips.get(id);
1409:                        len = strm.length;
1410:                        seq = strm.istream;
1411:                        face = faces[i];
1412:                        verts = face.verts;
1413:
1414:                        // sequential strips
1415:                        if (!strm.fan) {
1416:
1417:                            // a singleton strip
1418:                            if (len == 3) {
1419:
1420:                                // check all three neighbors
1421:                                for (int j = 0; j < 3; j++) {
1422:                                    int k = face.getNeighbor(j);
1423:                                    if ((k != EMPTY)
1424:                                            && ((id1 = faceTable[k]) != EMPTY)
1425:                                            && (id1 != id)) {
1426:                                        // reassign the sequence
1427:                                        seq[0] = verts[j];
1428:                                        seq[1] = verts[(j + 1) % 3];
1429:                                        seq[2] = verts[(j + 2) % 3];
1430:
1431:                                        // the neighboring stream
1432:                                        strm1 = (Istream) strips.get(id1);
1433:                                        len1 = strm1.length;
1434:                                        if (k != strm1.head) {
1435:                                            strm1.invert();
1436:                                            // if the length is odd set sync1 to true
1437:                                            if ((len1 % 2) != 0)
1438:                                                sync1 = true;
1439:                                        }
1440:                                        seq1 = strm1.istream;
1441:
1442:                                        // append a singleton strip
1443:                                        if (len1 == 3) {
1444:                                            //   				    System.out.println("reduce2");
1445:                                            int m = faces[k].findSharedEdge(i);
1446:                                            strm.append(faces[k].verts[m]);
1447:                                            strm1.length = 0;
1448:                                            strm1.istream = null;
1449:                                            strm.tail = k;
1450:                                            faceTable[k] = id;
1451:                                            i--;
1452:                                            break;
1453:                                        }
1454:
1455:                                        // append a strip of length over 2
1456:                                        else {
1457:                                            if ((len1 == 4)
1458:                                                    && (seq[1].index == seq1[0].index)
1459:                                                    && (seq[2].index == seq1[2].index)) {
1460:
1461:                                                // swap seq1[1] and seq1[2] so that
1462:                                                // seq[1] == seq1[0] and
1463:                                                // seq[1] == seq1[1]
1464:                                                swap = seq1[1];
1465:                                                seq1[1] = seq1[2];
1466:                                                seq1[2] = swap;
1467:                                            }
1468:
1469:                                            // see if we can join the strips
1470:                                            if ((seq[1].index == seq1[0].index)
1471:                                                    && (seq[2].index == seq1[1].index)) {
1472:                                                //   					System.out.println("reduce2");
1473:                                                // add the stream in
1474:                                                strm.addStream(strm1);
1475:                                                faceTable[k] = EMPTY;
1476:                                                faceTable[strm.tail] = id;
1477:
1478:                                                i--;
1479:                                                break;
1480:                                            } else if (sync1) {
1481:                                                strm1.invert();
1482:                                                sync1 = false;
1483:                                            }
1484:                                        }
1485:                                    }
1486:                                }
1487:                            }
1488:
1489:                            // not a singleton strip
1490:
1491:                            // can append a stream where the current face is the tail
1492:                            // or is an even length so we can invert it
1493:                            else if ((i == strm.tail) || ((len % 2) == 0)) {
1494:                                // if the current face isn't the tail, then
1495:                                // have to invert the strip
1496:                                if (i != strm.tail) {
1497:                                    strm.invert();
1498:                                    seq = strm.istream;
1499:                                }
1500:
1501:                                // 			System.out.println("seq.length = " + seq.length);
1502:                                // 			System.out.println("len = " + len);
1503:                                // 			System.out.print("seq = ");
1504:                                // 			for (int l = 0; l < seq.length; l++) {
1505:                                // 			    if (seq[l] == null) System.out.print(" null");
1506:                                // 			    else System.out.print(" " + seq[l].index);
1507:                                // 			}
1508:                                // 			System.out.println("");
1509:
1510:                                swap = seq[len - 3];
1511:
1512:                                // find the neighboring strip
1513:                                int m = EMPTY;
1514:                                if (verts[0].index == swap.index)
1515:                                    m = 0;
1516:                                else if (verts[1].index == swap.index)
1517:                                    m = 1;
1518:                                else if (verts[2].index == swap.index)
1519:                                    m = 2;
1520:                                if (m == EMPTY) {
1521:                                    if (DEBUG)
1522:                                        System.out
1523:                                                .println("problem finding neighbor strip");
1524:                                }
1525:                                int j = face.getNeighbor(m);
1526:                                if (j == EMPTY)
1527:                                    id1 = j;
1528:                                else
1529:                                    id1 = faceTable[j];
1530:                                if ((id1 != EMPTY)
1531:                                        && (((Istream) strips.get(id1)).fan != strm.fan)) {
1532:                                    id1 = EMPTY;
1533:                                }
1534:
1535:                                if ((id1 != EMPTY) && (id1 != id)) {
1536:                                    strm1 = (Istream) strips.get(id1);
1537:                                    len1 = strm1.length;
1538:
1539:                                    // if the shared face isn't the head, invert
1540:                                    // the stream
1541:                                    if (j != strm1.head) {
1542:                                        strm1.invert();
1543:                                        // set the sync var if the length is odd
1544:                                        if ((len1 % 2) != 0)
1545:                                            sync1 = true;
1546:                                    }
1547:                                    seq1 = strm1.istream;
1548:
1549:                                    // append a singleton strip
1550:                                    if (len1 == 3) {
1551:                                        //   				System.out.println("reduce2");
1552:                                        m = faces[j].findSharedEdge(i);
1553:                                        strm.append(faces[j].verts[m]);
1554:                                        strm1.length = 0;
1555:                                        strm1.istream = null;
1556:                                        strm.tail = j;
1557:                                        faceTable[i] = EMPTY;
1558:                                        faceTable[j] = id;
1559:                                    }
1560:
1561:                                    // append a non-singleton strip
1562:                                    else {
1563:                                        if ((len1 == 4)
1564:                                                && (seq[len - 2].index == seq1[0].index)
1565:                                                && (seq[len - 1].index == seq1[2].index)) {
1566:
1567:                                            // swap seq1[1] and seq1[2] so that
1568:                                            // seq[len-2] == seq1[0] and
1569:                                            // seq[len-1] == seq1[1]
1570:                                            swap = seq1[1];
1571:                                            seq1[1] = seq1[2];
1572:                                            seq1[2] = swap;
1573:                                        }
1574:
1575:                                        // see if we can append the strip
1576:                                        if ((seq[len - 2].index == seq1[0].index)
1577:                                                && (seq[len - 1].index == seq1[1].index)) {
1578:                                            //   				    System.out.println("reduce2");
1579:                                            strm.addStream(strm1);
1580:                                            faceTable[i] = EMPTY;
1581:                                            faceTable[strm.tail] = id;
1582:                                            faceTable[j] = EMPTY;
1583:                                        } else if (sync1)
1584:                                            strm1.invert();
1585:                                    }
1586:                                }
1587:                            }
1588:                        }
1589:                    }
1590:                }
1591:            }
1592:
1593:            /**
1594:             * find all links that reduce cost by 1
1595:             */
1596:            void reduceCostByOne(ArrayList strips, Face[] faces, int[] faceTable) {
1597:                //  	System.out.println("reduceCostByOne");
1598:                // number of faces in the face array
1599:                int numFaces = faces.length;
1600:                // possible adjacent strips
1601:                int id, id1, id2;
1602:                // Istreams
1603:                Istream strm, strm1;
1604:                // the length of the Istream
1605:                int len, len1;
1606:                // vertex sequences for tristrips
1607:                Vertex[] seq, seq1;
1608:                // a face
1609:                Face face;
1610:                // the list of vertices for the face
1611:                Vertex[] verts;
1612:                // used to synchronize the orientation
1613:                boolean sync, sync1;
1614:                // a swap variable
1615:                Vertex swap;
1616:
1617:                for (int i = 0; i < numFaces; i++) {
1618:                    id = faceTable[i];
1619:                    if ((id != EMPTY) && !((Istream) strips.get(id)).fan) {
1620:                        sync = false;
1621:                        strm = (Istream) strips.get(id);
1622:                        seq = strm.istream;
1623:                        face = faces[i];
1624:                        verts = face.verts;
1625:                        len = strm.length;
1626:
1627:                        // a singleton strip
1628:                        if (len == 3) {
1629:
1630:                            // consider the three neighboring triangles
1631:                            for (int j = 0; j < 3; j++) {
1632:                                int k = face.getNeighbor(j);
1633:                                if ((k != EMPTY)
1634:                                        && ((id1 = faceTable[k]) != EMPTY)
1635:                                        && (id1 != id)
1636:                                        && (!((Istream) strips.get(id1)).fan)) {
1637:
1638:                                    // reassign the sequence
1639:                                    seq[0] = verts[j];
1640:                                    seq[1] = verts[(j + 1) % 3];
1641:                                    seq[2] = verts[(j + 2) % 3];
1642:
1643:                                    // the neighboring stream
1644:                                    strm1 = (Istream) strips.get(id1);
1645:                                    len1 = strm1.length;
1646:                                    if (k != strm1.head) {
1647:                                        strm1.invert();
1648:                                        if ((len1 % 2) != 0)
1649:                                            sync = true;
1650:                                    }
1651:                                    seq1 = strm1.istream;
1652:
1653:                                    // see if we can join the strips
1654:
1655:                                    if ((len1 == 4)
1656:                                            && (((seq[1].index == seq1[2].index) && (seq[2].index == seq1[0].index)) || ((seq[1].index == seq1[0].index) && (seq[2].index == seq1[2].index)))) {
1657:                                        swap = seq1[1];
1658:                                        seq1[1] = seq1[2];
1659:                                        seq1[2] = swap;
1660:                                    }
1661:
1662:                                    if ((seq[1].index == seq1[0].index)
1663:                                            && (seq[2].index == seq1[1].index)) {
1664:                                        //  				System.out.println("reduce1");
1665:                                        strm.addStream(strm1);
1666:                                        faceTable[k] = EMPTY;
1667:                                        faceTable[strm.tail] = id;
1668:                                        i--;
1669:                                        break;
1670:                                    }
1671:
1672:                                    if ((seq[1].index == seq1[1].index)
1673:                                            && (seq[2].index == seq1[0].index)) {
1674:                                        //   				System.out.println("reduce1");
1675:                                        strm.append(seq1[1]);
1676:                                        strm.addStream(strm1);
1677:                                        faceTable[k] = EMPTY;
1678:                                        faceTable[strm.tail] = id;
1679:                                        i--;
1680:                                        break;
1681:                                    }
1682:
1683:                                    if ((seq[1].index == seq1[0].index)
1684:                                            && (seq[2].index == seq1[2].index)) {
1685:                                        //   				System.out.println("reduce1");
1686:                                        seq1[0] = seq1[2];
1687:                                        strm.append(seq1[1]);
1688:                                        strm.addStream(strm1);
1689:                                        faceTable[k] = EMPTY;
1690:                                        faceTable[strm.tail] = id;
1691:                                        i--;
1692:                                        break;
1693:                                    }
1694:
1695:                                    if (sync) {
1696:                                        strm1.invert();
1697:                                        sync = false;
1698:                                    }
1699:                                }
1700:                            }
1701:                        }
1702:
1703:                        // non-singleton strip
1704:                        else if ((i == strm.tail) || ((len % 2) == 0)) {
1705:
1706:                            // make sure the face i ends the id-th strip
1707:                            if (i != strm.tail) {
1708:                                strm.invert();
1709:                                seq = strm.istream;
1710:                            }
1711:
1712:                            swap = seq[len - 3];
1713:
1714:                            // find the neighboring strip
1715:                            int m = EMPTY;
1716:                            if (verts[0].index == swap.index)
1717:                                m = 0;
1718:                            else if (verts[1].index == swap.index)
1719:                                m = 1;
1720:                            else if (verts[2].index == swap.index)
1721:                                m = 2;
1722:                            if (m == EMPTY) {
1723:                                if (DEBUG)
1724:                                    System.out
1725:                                            .println("problem finding neighbor strip");
1726:                            }
1727:                            int j = face.getNeighbor(m);
1728:                            if (j == EMPTY)
1729:                                id1 = j;
1730:                            else
1731:                                id1 = faceTable[j];
1732:                            if ((id1 != EMPTY)
1733:                                    && (((Istream) strips.get(id1)).fan != strm.fan)) {
1734:                                id1 = EMPTY;
1735:                            }
1736:
1737:                            // find another neighboring strip
1738:                            swap = seq[len - 2];
1739:                            m = EMPTY;
1740:                            if (verts[0].index == swap.index)
1741:                                m = 0;
1742:                            else if (verts[1].index == swap.index)
1743:                                m = 1;
1744:                            else if (verts[2].index == swap.index)
1745:                                m = 2;
1746:                            if (m == EMPTY) {
1747:                                if (DEBUG)
1748:                                    System.out
1749:                                            .println("problem finding neighbor strip.");
1750:                            }
1751:                            int k = face.getNeighbor(m);
1752:                            if (k == EMPTY)
1753:                                id2 = k;
1754:                            else
1755:                                id2 = faceTable[k];
1756:                            if ((id2 != EMPTY)
1757:                                    && (((Istream) strips.get(id2)).fan != strm.fan)) {
1758:                                id2 = EMPTY;
1759:                            }
1760:
1761:                            // consider strip id1
1762:                            boolean success = false;
1763:                            if ((id1 != EMPTY) && (id1 != id)) {
1764:                                strm1 = (Istream) strips.get(id1);
1765:                                len1 = strm1.length;
1766:                                if (j != strm1.head) {
1767:                                    strm1.invert();
1768:                                    if ((len1 % 2) != 0)
1769:                                        sync = true;
1770:                                }
1771:                                seq1 = strm1.istream;
1772:
1773:                                if ((len1 == 4)
1774:                                        && (((seq[len - 2].index == seq1[2].index) && (seq[len - 1].index == seq1[0].index)) || (seq[len - 2].index == seq1[0].index)
1775:                                                && (seq[len - 1].index == seq1[2].index))) {
1776:                                    swap = seq1[1];
1777:                                    seq1[1] = seq1[2];
1778:                                    seq1[2] = swap;
1779:                                }
1780:
1781:                                // find matches
1782:                                if ((seq[len - 2].index == seq1[0].index)
1783:                                        && (seq[len - 1].index == seq1[1].index)) {
1784:                                    //   			    System.out.println("reduce1");
1785:                                    strm.addStream(strm1);
1786:                                    faceTable[i] = EMPTY;
1787:                                    faceTable[strm.tail] = id;
1788:                                    faceTable[j] = EMPTY;
1789:                                    success = true;
1790:                                }
1791:
1792:                                else if ((seq[len - 2].index == seq1[1].index)
1793:                                        && (seq[len - 1].index == seq1[0].index)) {
1794:                                    //   			    System.out.println("reduce1");
1795:                                    strm.append(seq1[1]);
1796:                                    strm.addStream(strm1);
1797:                                    faceTable[i] = EMPTY;
1798:                                    faceTable[strm.tail] = id;
1799:                                    faceTable[j] = EMPTY;
1800:                                    success = true;
1801:                                }
1802:
1803:                                else if ((seq[len - 2].index == seq1[0].index)
1804:                                        && (seq[len - 1].index == seq1[2].index)) {
1805:                                    //   			    System.out.println("reduce1");
1806:                                    seq1[0] = seq1[2];
1807:                                    strm.append(seq1[1]);
1808:                                    strm.addStream(strm1);
1809:                                    faceTable[i] = EMPTY;
1810:                                    faceTable[strm.tail] = id;
1811:                                    faceTable[j] = EMPTY;
1812:                                    success = true;
1813:                                } else if (sync) {
1814:                                    strm1.invert();
1815:                                    sync = false;
1816:                                }
1817:                            }
1818:
1819:                            // now consider strip id2
1820:                            if (!success && (id2 != EMPTY) && (id2 != id)) {
1821:                                strm1 = (Istream) strips.get(id2);
1822:                                len1 = strm1.length;
1823:                                if (k != strm1.head) {
1824:                                    strm1.invert();
1825:                                    if ((len1 % 2) != 0)
1826:                                        sync = true;
1827:                                }
1828:                                seq1 = strm1.istream;
1829:
1830:                                if ((len1 == 4)
1831:                                        && (seq[len - 3].index == seq1[0].index)
1832:                                        && (seq[len - 1].index == seq1[2].index)) {
1833:                                    swap = seq1[1];
1834:                                    seq1[1] = seq1[2];
1835:                                    seq1[2] = swap;
1836:                                }
1837:
1838:                                // find matches
1839:
1840:                                if ((seq[len - 3].index == seq1[0].index)
1841:                                        && (seq[len - 1].index == seq1[1].index)) {
1842:                                    //   			    System.out.println("reduce1");
1843:                                    strm.swapEnd();
1844:                                    strm.addStream(strm1);
1845:                                    faceTable[i] = EMPTY;
1846:                                    faceTable[strm.tail] = id;
1847:                                    faceTable[k] = EMPTY;
1848:                                    success = true;
1849:                                }
1850:                                if (!success && sync)
1851:                                    strm1.invert();
1852:                            }
1853:                        }
1854:                    }
1855:                }
1856:            }
1857:
1858:            /**
1859:             * find all the links that reduce the cost by 0
1860:             */
1861:            void reduceCostByZero(ArrayList strips, Face[] faces,
1862:                    int[] faceTable) {
1863:                //  	System.out.println("reduceCostByZero");
1864:                // number of faces in the face array
1865:                int numFaces = faces.length;
1866:                // possible adjacent strips
1867:                int id, id1, id2;
1868:                // Istreams
1869:                Istream strm, strm1;
1870:                // the length of the Istream
1871:                int len, len1;
1872:                // vertex sequences for tristrips
1873:                Vertex[] seq, seq1;
1874:                // a face
1875:                Face face;
1876:                // the list of vertices for the face
1877:                Vertex[] verts;
1878:                // used to synchronize the orientation
1879:                boolean sync, sync1;
1880:                // a swap variable
1881:                Vertex swap;
1882:
1883:                for (int i = 0; i < numFaces; i++) {
1884:                    id = faceTable[i];
1885:                    if ((id != EMPTY) && !((Istream) strips.get(id)).fan) {
1886:                        sync = false;
1887:                        strm = (Istream) strips.get(id);
1888:                        seq = strm.istream;
1889:                        len = strm.length;
1890:                        face = faces[i];
1891:                        verts = face.verts;
1892:
1893:                        if (len == 3) {
1894:                            for (int j = 0; j < 3; j++) {
1895:                                int k = face.getNeighbor(j);
1896:                                if ((k != EMPTY)
1897:                                        && ((id1 = faceTable[k]) != EMPTY)
1898:                                        && (id1 != id)
1899:                                        && !((Istream) strips.get(id1)).fan) {
1900:                                    // reassign the sequence
1901:                                    seq[0] = verts[j];
1902:                                    seq[1] = verts[(j + 1) % 3];
1903:                                    seq[2] = verts[(j + 2) % 3];
1904:
1905:                                    // the neighboring stream
1906:                                    strm1 = (Istream) strips.get(id1);
1907:                                    len1 = strm1.length;
1908:                                    if (k != strm1.head) {
1909:                                        strm1.invert();
1910:                                        if ((len1 % 2) != 0)
1911:                                            sync = true;
1912:                                    }
1913:                                    seq1 = strm1.istream;
1914:
1915:                                    // see if we can join the strips
1916:                                    if ((seq[1].index == seq1[2].index)
1917:                                            && (seq[2].index == seq1[0].index)) {
1918:                                        //   				System.out.println("reduce0");
1919:                                        seq1[0] = seq1[2];
1920:                                        strm.append(seq1[0]);
1921:                                        strm.append(seq1[1]);
1922:                                        strm.addStream(strm1);
1923:                                        faceTable[k] = EMPTY;
1924:                                        faceTable[strm.tail] = id;
1925:                                        i--;
1926:                                        break;
1927:                                    } else if (sync) {
1928:                                        strm1.invert();
1929:                                        sync = false;
1930:                                    }
1931:                                }
1932:                            }
1933:                        } else if ((i == strm.tail) || ((len % 2) == 0)) {
1934:                            if (i != strm.tail) {
1935:                                strm.invert();
1936:                                seq = strm.istream;
1937:                            }
1938:
1939:                            swap = seq[len - 3];
1940:
1941:                            // find neighboring strip
1942:                            int m = EMPTY;
1943:                            if (verts[0].index == swap.index)
1944:                                m = 0;
1945:                            else if (verts[1].index == swap.index)
1946:                                m = 1;
1947:                            else if (verts[2].index == swap.index)
1948:                                m = 2;
1949:                            if (m == EMPTY) {
1950:                                if (DEBUG)
1951:                                    System.out
1952:                                            .println("problem finding neighbor strip");
1953:                            }
1954:                            int j = face.getNeighbor(m);
1955:                            if (j == EMPTY)
1956:                                id1 = j;
1957:                            else
1958:                                id1 = faceTable[j];
1959:                            if ((id1 != EMPTY)
1960:                                    && (((Istream) strips.get(id1)).fan != strm.fan)) {
1961:                                id1 = EMPTY;
1962:                            }
1963:
1964:                            // find another neighboring strip
1965:                            swap = seq[len - 2];
1966:                            m = EMPTY;
1967:                            if (verts[0].index == swap.index)
1968:                                m = 0;
1969:                            else if (verts[1].index == swap.index)
1970:                                m = 1;
1971:                            else if (verts[2].index == swap.index)
1972:                                m = 2;
1973:                            if (m == EMPTY) {
1974:                                if (DEBUG)
1975:                                    System.out
1976:                                            .println("problem finding neighbor strip.");
1977:                            }
1978:                            int k = face.getNeighbor(m);
1979:                            if (k == EMPTY)
1980:                                id2 = k;
1981:                            else
1982:                                id2 = faceTable[k];
1983:                            if ((id2 != EMPTY)
1984:                                    && (((Istream) strips.get(id2)).fan != strm.fan)) {
1985:                                id2 = EMPTY;
1986:                            }
1987:
1988:                            // consider strip id1
1989:                            boolean success = false;
1990:                            if ((id1 != EMPTY) && (id1 != id)) {
1991:                                strm1 = (Istream) strips.get(id1);
1992:                                len1 = strm1.length;
1993:                                if (j != strm1.head) {
1994:                                    strm1.invert();
1995:                                    if ((len1 % 2) != 0)
1996:                                        sync = true;
1997:                                }
1998:                                seq1 = strm1.istream;
1999:
2000:                                // find matches
2001:                                if ((seq[len - 2].index == seq1[2].index)
2002:                                        && (seq[len - 1].index == seq1[0].index)) {
2003:                                    //   			    System.out.println("reduce0");
2004:                                    seq1[0] = seq1[2];
2005:                                    strm.append(seq1[0]);
2006:                                    strm.append(seq1[1]);
2007:                                    strm.addStream(strm1);
2008:                                    faceTable[i] = EMPTY;
2009:                                    faceTable[strm.tail] = id;
2010:                                    faceTable[j] = EMPTY;
2011:                                    success = true;
2012:                                } else if (sync) {
2013:                                    strm1.invert();
2014:                                    sync = false;
2015:                                }
2016:                            }
2017:
2018:                            // consider strip id2
2019:                            if (!success && (id2 != EMPTY) && (id2 != id)) {
2020:                                strm1 = (Istream) strips.get(id2);
2021:                                len1 = strm1.length;
2022:                                if (k != strm1.head) {
2023:                                    strm1.invert();
2024:                                    if ((len1 % 2) != 0)
2025:                                        sync = true;
2026:                                }
2027:                                seq1 = strm1.istream;
2028:
2029:                                if ((len1 == 4)
2030:                                        && (((seq[len - 3].index == seq1[2].index) && (seq[len - 1].index == seq1[0].index)) || ((seq[len - 3].index == seq1[0].index) && (seq[len - 1].index == seq1[2].index)))) {
2031:
2032:                                    swap = seq1[1];
2033:                                    seq1[1] = seq1[2];
2034:                                    seq1[2] = swap;
2035:                                }
2036:
2037:                                // find matches
2038:                                if ((seq[len - 3].index == seq1[1].index)
2039:                                        && (seq[len - 1].index == seq1[0].index)) {
2040:                                    //   			    System.out.println("reduce0");
2041:                                    strm.swapEnd();
2042:                                    strm.append(seq1[1]);
2043:                                    strm.addStream(strm1);
2044:                                    faceTable[i] = EMPTY;
2045:                                    faceTable[strm.tail] = id;
2046:                                    faceTable[k] = EMPTY;
2047:                                } else if ((seq[len - 3].index == seq1[0].index)
2048:                                        && (seq[len - 1].index == seq1[2].index)) {
2049:                                    //   			    System.out.println("reduce0");
2050:                                    seq1[0] = seq1[2];
2051:                                    strm.swapEnd();
2052:                                    strm.append(seq1[1]);
2053:                                    strm.addStream(strm1);
2054:                                    faceTable[i] = EMPTY;
2055:                                    faceTable[strm.tail] = id;
2056:                                    faceTable[k] = EMPTY;
2057:                                } else if ((seq[len - 3].index == seq1[0].index)
2058:                                        && (seq[len - 1].index == seq1[1].index)) {
2059:                                    //   			    System.out.println("reduce0");
2060:                                    strm.swapEnd();
2061:                                    strm.addStream(strm1);
2062:                                    faceTable[i] = EMPTY;
2063:                                    faceTable[strm.tail] = id;
2064:                                    faceTable[k] = EMPTY;
2065:                                } else if (sync)
2066:                                    strm1.invert();
2067:                            }
2068:                        }
2069:                    }
2070:                }
2071:            }
2072:
2073:            /**
2074:             * puts the stripified data back into the GeometryInfo object
2075:             */
2076:            void putBackData(GeometryInfo gi, ArrayList strips) {
2077:                int[] tempStripCounts = new int[strips.size()];
2078:                int ciSize = 0;
2079:                int stripLength;
2080:                for (int i = 0; i < strips.size();) {
2081:                    stripLength = ((Istream) strips.get(i)).length;
2082:                    if (stripLength != 0) {
2083:                        tempStripCounts[i] = stripLength;
2084:                        ciSize += stripLength;
2085:                        i++;
2086:                    } else {
2087:                        strips.remove(i);
2088:                    }
2089:                }
2090:                if (ciSize > 3) {
2091:                    gi.setPrimitive(gi.TRIANGLE_STRIP_ARRAY);
2092:                    int[] stripCounts = new int[strips.size()];
2093:                    System.arraycopy(tempStripCounts, 0, stripCounts, 0, strips
2094:                            .size());
2095:                    gi.setStripCounts(stripCounts);
2096:
2097:                    // create one array with all the strips
2098:                    int[] coords = new int[ciSize];
2099:
2100:                    // create arrays for normals, textures and colors if necessary
2101:                    int[] normals = null;
2102:                    int[][] textures = null;
2103:                    int[] colors = null;
2104:                    javax.vecmath.Color3b[] stripColors = null;
2105:                    if (hasNormals)
2106:                        normals = new int[ciSize];
2107:                    if (hasTextures) {
2108:                        textures = new int[texSetCount][ciSize];
2109:                    }
2110:                    if (hasColors)
2111:                        colors = new int[ciSize];
2112:                    if (colorStrips) {
2113:                        stripColors = new javax.vecmath.Color3b[ciSize];
2114:                        colors = new int[ciSize];
2115:                    }
2116:                    int count = 0;
2117:                    Istream currStrip;
2118:                    for (int i = 0; i < strips.size(); i++) {
2119:                        currStrip = (Istream) strips.get(i);
2120:
2121:                        if (currStrip.length < 3) {
2122:                            throw new RuntimeException("currStrip.length = "
2123:                                    + currStrip.length);
2124:                        }
2125:
2126:                        java.awt.Color stripColor = null;
2127:                        if (colorStrips) {
2128:                            int r = ((int) (Math.random() * 1000)) % 255;
2129:                            int g = ((int) (Math.random() * 1000)) % 255;
2130:                            int b = ((int) (Math.random() * 1000)) % 255;
2131:                            stripColor = new java.awt.Color(r, g, b);
2132:                        }
2133:
2134:                        for (int j = 0; j < currStrip.length; j++) {
2135:                            coords[count] = currStrip.istream[j].index;
2136:                            if (hasNormals)
2137:                                normals[count] = currStrip.istream[j].normal;
2138:                            if (hasTextures) {
2139:                                for (int k = 0; k < texSetCount; k++) {
2140:                                    textures[k][count] = currStrip.istream[j].texture[k];
2141:                                }
2142:                            }
2143:                            if (hasColors)
2144:                                colors[count] = currStrip.istream[j].color;
2145:                            if (colorStrips)
2146:                                stripColors[count] = new javax.vecmath.Color3b(
2147:                                        stripColor);
2148:                            count++;
2149:                        }
2150:                    }
2151:                    gi.setCoordinateIndices(coords);
2152:                    if (hasNormals)
2153:                        gi.setNormalIndices(normals);
2154:                    if (hasTextures) {
2155:                        for (int i = 0; i < texSetCount; i++) {
2156:                            gi.setTextureCoordinateIndices(i, textures[i]);
2157:                        }
2158:                    }
2159:                    if (hasColors)
2160:                        gi.setColorIndices(colors);
2161:                    if (colorStrips) {
2162:                        gi.setColors(stripColors);
2163:                        colors = gi.getListIndices(stripColors);
2164:                        gi.setColorIndices(colors);
2165:                    }
2166:                }
2167:            }
2168:
2169:            /**
2170:             * Stores the infomration about a vertex
2171:             */
2172:            class Vertex {
2173:
2174:                int index;
2175:                int normal = EMPTY;
2176:                int numTexSets = 0;
2177:                int[] texture = null;
2178:                int color = EMPTY;
2179:
2180:                Vertex(int vertIndex) {
2181:                    this (vertIndex, EMPTY, 0, null, EMPTY);
2182:                }
2183:
2184:                Vertex(int vertIndex, int vertNormal, int vertNumTexSets,
2185:                        int[] vertTexture, int vertColor) {
2186:                    index = vertIndex;
2187:                    normal = vertNormal;
2188:                    numTexSets = vertNumTexSets;
2189:                    if (numTexSets > 0) {
2190:                        texture = new int[numTexSets];
2191:                        System
2192:                                .arraycopy(vertTexture, 0, texture, 0,
2193:                                        numTexSets);
2194:                    }
2195:                    color = vertColor;
2196:                }
2197:
2198:                boolean equals(Vertex v) {
2199:                    for (int i = 0; i < numTexSets; i++) {
2200:                        if (texture[i] != v.texture[i]) {
2201:                            return false;
2202:                        }
2203:                    }
2204:                    return ((v.index == index) && (v.normal == normal) && (v.color == color));
2205:                }
2206:
2207:                // will this yield same results as c code ???
2208:                boolean lessThan(Vertex v) {
2209:                    if (index < v.index)
2210:                        return true;
2211:                    if (index > v.index)
2212:                        return false;
2213:                    if (normal < v.normal)
2214:                        return true;
2215:                    if (normal > v.normal)
2216:                        return false;
2217:                    for (int i = 0; i < numTexSets; i++) {
2218:                        if (texture[i] < v.texture[i])
2219:                            return true;
2220:                        if (texture[i] > v.texture[i])
2221:                            return false;
2222:                    }
2223:                    if (color < v.color)
2224:                        return true;
2225:                    if (color > v.color)
2226:                        return false;
2227:                    return false;
2228:                }
2229:            }
2230:
2231:            /**
2232:             * Stores the information about an edge of a triangle
2233:             */
2234:            class Edge {
2235:
2236:                Vertex v1, v2;
2237:                int face;
2238:
2239:                Edge(Vertex vertex1, Vertex vertex2, int faceIndex) {
2240:                    face = faceIndex;
2241:
2242:                    // this could be causing wrapping problem
2243:                    if (vertex1.lessThan(vertex2)) {
2244:                        v1 = vertex1;
2245:                        v2 = vertex2;
2246:                    } else {
2247:                        v1 = vertex2;
2248:                        v2 = vertex1;
2249:                    }
2250:                }
2251:
2252:                /**
2253:                 * Determine whether the edges have the same vertices
2254:                 */
2255:                boolean equals(Edge edge) {
2256:                    return ((v1.equals(edge.v1)) && (v2.equals(edge.v2)));
2257:
2258:                }
2259:
2260:                /**
2261:                 * Used to sort the edges.  If this is less than the edge parameter,
2262:                 * return true.  First check if vertex1 is less than vertex1 of the
2263:                 * edge provided.  If so, return true.  If the first vertices are equal
2264:                 * then check vertex2.
2265:                 */
2266:                boolean lessThan(Edge edge) {
2267:                    if (v1.lessThan(edge.v1))
2268:                        return true;
2269:                    else if (v1.equals(edge.v1))
2270:                        return (v2.lessThan(edge.v2));
2271:                    else
2272:                        return false;
2273:                }
2274:            }
2275:
2276:            /**
2277:             * Stores the information about the face of a triangle
2278:             */
2279:            class Face {
2280:                int key;
2281:                int numNhbrs = 0;
2282:                Vertex[] verts = null;
2283:                // edges are kept in order s.t. the ith edge is the opposite
2284:                // edge of the ith vertex
2285:                Edge[] edges = null;
2286:
2287:                /**
2288:                 * Creates a new Face with the three given vertices
2289:                 */
2290:                Face(int index, Vertex v1, Vertex v2, Vertex v3) {
2291:                    key = index;
2292:
2293:                    verts = new Vertex[3];
2294:                    verts[0] = v1;
2295:                    verts[1] = v2;
2296:                    verts[2] = v3;
2297:
2298:                    edges = new Edge[3];
2299:                    edges[0] = null;
2300:                    edges[1] = null;
2301:                    edges[2] = null;
2302:                    numNhbrs = 3;
2303:                }
2304:
2305:                /**
2306:                 * returns the index of the face that neighbors the edge supplied
2307:                 * by the parameter
2308:                 */
2309:                int getNeighbor(int edge) {
2310:                    return edges[edge].face;
2311:                }
2312:
2313:                /**
2314:                 * returns the index of the edge that is shared by the triangle
2315:                 * specified by the key parameter
2316:                 */
2317:                int findSharedEdge(int key) {
2318:                    if (edges[0].face == key)
2319:                        return 0;
2320:                    else if (edges[1].face == key)
2321:                        return 1;
2322:                    else if (edges[2].face == key)
2323:                        return 2;
2324:                    else
2325:                        return -1; /* error */
2326:                }
2327:
2328:                int getEdgeIndex(Edge edge) {
2329:                    if (edges[0].equals(edge))
2330:                        return 0;
2331:                    else if (edges[1].equals(edge))
2332:                        return 1;
2333:                    else
2334:                        return 2;
2335:                }
2336:
2337:                void counterEdgeDel(Edge edge) {
2338:                    if (DEBUG) {
2339:                        System.out.println("counterEdgeDel");
2340:                    }
2341:                    if ((edges[0]).equals(edge)) {
2342:                        edges[0].face = EMPTY;
2343:                        numNhbrs--;
2344:                    } else if ((edges[1]).equals(edge)) {
2345:                        edges[1].face = EMPTY;
2346:                        numNhbrs--;
2347:                    } else if ((edges[2]).equals(edge)) {
2348:                        edges[2].face = EMPTY;
2349:                        numNhbrs--;
2350:                    } else {
2351:                        if (DEBUG) {
2352:                            System.out.println("error in counterEdgeDel");
2353:                        }
2354:                    }
2355:                }
2356:
2357:                void printAdjacency() {
2358:                    System.out.println("Face " + key + ": ");
2359:                    System.out.println("\t numNhbrs = " + numNhbrs);
2360:                    System.out.println("\t edge 0: Face " + edges[0].face);
2361:                    System.out.println("\t edge 1: Face " + edges[1].face);
2362:                    System.out.println("\t edge 2: Face " + edges[2].face);
2363:                }
2364:
2365:                void printVertices() {
2366:                    System.out.println("Face " + key + ": (" + verts[0].index
2367:                            + ", " + verts[1].index + ", " + verts[2].index
2368:                            + ")");
2369:                }
2370:            }
2371:
2372:            /**
2373:             * stores the information for a face node
2374:             */
2375:            class Node {
2376:                Face face; // the data: the face
2377:                Node parent; // the parent node
2378:                Node left; // the left child
2379:                Node right; // the right child
2380:                int depth; // the topological distance of the node from the root
2381:                int numChildren; // the number of children
2382:                int attrib; // characteristic of the node eg. color
2383:
2384:                // the attributes - 3 states for the Node
2385:                static final int WHITE = 0; // not being accessed yet
2386:                static final int GREY = 1; // being accessed but not done yet
2387:                static final int BLACK = 2; // done
2388:
2389:                Node(Face f) {
2390:                    face = f;
2391:                }
2392:
2393:                /**
2394:                 * inserts this node below the parent supplied.
2395:                 */
2396:                void insert(Node p) {
2397:                    parent = p;
2398:                    depth = p.depth + 1;
2399:                    attrib = GREY;
2400:
2401:                    if (parent.left == null)
2402:                        parent.left = this ;
2403:                    else
2404:                        parent.right = this ;
2405:                    (parent.numChildren)++;
2406:                }
2407:
2408:                /**
2409:                 * remove this node from its parent
2410:                 */
2411:                void remove() {
2412:                    if (parent != null) {
2413:                        if (parent.left == this ) {
2414:                            parent.left = parent.right;
2415:                            parent.right = null;
2416:                        } else {
2417:                            parent.right = null;
2418:                        }
2419:                        (parent.numChildren)--;
2420:                    }
2421:                }
2422:
2423:                /**
2424:                 * sets the depth to 0 and the attrib to GREY
2425:                 */
2426:                void setRoot() {
2427:                    depth = 0;
2428:                    attrib = GREY;
2429:                }
2430:
2431:                /**
2432:                 * returns true if the attrib is WHITE
2433:                 */
2434:                boolean notAccessed() {
2435:                    return (attrib == WHITE);
2436:                }
2437:
2438:                /**
2439:                 * sets the color to BLACK
2440:                 */
2441:                void processed() {
2442:                    attrib = BLACK;
2443:                }
2444:
2445:                /**
2446:                 * a node is the root if it doesn't have a parent
2447:                 */
2448:                boolean isRoot() {
2449:                    return (parent == null);
2450:                }
2451:
2452:                /**
2453:                 * prints the information in this Node
2454:                 */
2455:                void print() {
2456:                    System.out.println(this );
2457:                    System.out.println("Node depth: " + depth);
2458:                    face.printVertices();
2459:                    System.out.print("parent: ");
2460:                    if (parent != null)
2461:                        parent.face.printVertices();
2462:                    else
2463:                        System.out.println("null");
2464:                    System.out.print("left: ");
2465:                    if (left != null)
2466:                        left.face.printVertices();
2467:                    else
2468:                        System.out.println("null");
2469:                    System.out.print("right: ");
2470:                    if (right != null)
2471:                        right.face.printVertices();
2472:                    else
2473:                        System.out.println("null");
2474:                    System.out.println("attrib: " + attrib);
2475:                    System.out.println("");
2476:                }
2477:            }
2478:
2479:            /**
2480:             * sorts the Nodes by depth
2481:             */
2482:            class SortedList {
2483:
2484:                ArrayList list;
2485:
2486:                /**
2487:                 * create a new SortedList
2488:                 */
2489:                SortedList() {
2490:                    list = new ArrayList();
2491:                }
2492:
2493:                /**
2494:                 * insert into the list sorted by depth.  start looking at start
2495:                 * to save some time.  Returns the index of the next item of the
2496:                 * inserted element
2497:                 */
2498:                int sortedInsert(Node data, int start) {
2499:                    // adjust start to where insert sorted
2500:                    while ((start < list.size())
2501:                            && (((Node) list.get(start)).depth <= data.depth)) {
2502:                        start++;
2503:                    }
2504:
2505:                    // insert at start index
2506:                    list.add(start, data);
2507:
2508:                    // return start+1 -- the index of the next element
2509:                    return (start + 1);
2510:                }
2511:
2512:                /**
2513:                 * remove and return 1st element
2514:                 */
2515:                Node pop() {
2516:                    if (!list.isEmpty())
2517:                        return (Node) list.remove(0);
2518:                    else
2519:                        return null;
2520:                }
2521:            }
2522:
2523:            class Istream {
2524:
2525:                // fan encoding
2526:                boolean fan = false;
2527:                // length of the strip
2528:                int length = 0;
2529:                // array that specifies triangle strip
2530:                Vertex[] istream;
2531:                // indices of the head and tail vertices
2532:                int head, tail;
2533:
2534:                /**
2535:                 * creates a new Istream to store the triangle strip
2536:                 */
2537:                Istream(Vertex[] list, int size, boolean isFan) {
2538:                    if (size == 0)
2539:                        throw new RuntimeException("size is 0");
2540:                    fan = isFan;
2541:                    length = size;
2542:                    istream = new Vertex[length];
2543:                    int i;
2544:                    System.arraycopy(list, 0, istream, 0, length);
2545:                }
2546:
2547:                /**
2548:                 * adds a new vertex to the end of the stream
2549:                 * makes the int array bigger, if necessary
2550:                 */
2551:                void append(Vertex vertex) {
2552:                    growArray();
2553:                    // add in new vertex
2554:                    istream[length] = vertex;
2555:                    length++;
2556:                }
2557:
2558:                /**
2559:                 * turns the encoding (..., -3, -2, -1) into (.... -3, -2, -3, -1)
2560:                 * so that zero-area triangle (-3, -2. -3) is added
2561:                 */
2562:                void swapEnd() {
2563:                    growArray();
2564:                    istream[length] = istream[length - 1];
2565:                    istream[length - 1] = istream[length - 3];
2566:                    length++;
2567:                }
2568:
2569:                /**
2570:                 * makes the array bigger, if necessary
2571:                 */
2572:                void growArray() {
2573:                    if (length >= istream.length) {
2574:                        Vertex[] old = istream;
2575:                        // for now add enough space to add three more vertices
2576:                        // may change this later
2577:                        istream = new Vertex[length + 3];
2578:                        System.arraycopy(old, 0, istream, 0, length);
2579:                    }
2580:                }
2581:
2582:                /**
2583:                 * inverts the istream
2584:                 */
2585:                void invert() {
2586:                    Vertex[] tmp = new Vertex[istream.length];
2587:                    // reverse the stream
2588:                    for (int i = 0; i < length; i++) {
2589:                        tmp[i] = istream[length - i - 1];
2590:                    }
2591:                    // copy it back
2592:                    System.arraycopy(tmp, 0, istream, 0, istream.length);
2593:                    tmp = null;
2594:                    // swap the head and the tail
2595:                    int swap = head;
2596:                    head = tail;
2597:                    tail = swap;
2598:                }
2599:
2600:                /**
2601:                 * concats two streams into one big stream
2602:                 */
2603:                void addStream(Istream strm) {
2604:                    //  	    System.out.println("addStream");
2605:                    int strmLen = strm.length;
2606:                    int size = strmLen + length - 2;
2607:
2608:                    // make the istream bigger
2609:                    if (size >= istream.length) {
2610:                        Vertex[] old = istream;
2611:                        istream = new Vertex[size];
2612:                        System.arraycopy(old, 0, istream, 0, length);
2613:                    }
2614:
2615:                    // add the strm to istream
2616:                    System.arraycopy(strm.istream, 2, istream, length,
2617:                            strmLen - 2);
2618:
2619:                    tail = strm.tail;
2620:                    length = size;
2621:                    strm.length = 0;
2622:                    strm.istream = null;
2623:                }
2624:            }
2625:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.