Source Code Cross Referenced for URI.java in  » 6.0-JDK-Core » net » java » net » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Home
Java Source Code / Java Documentation
1.6.0 JDK Core
2.6.0 JDK Modules
3.6.0 JDK Modules com.sun
4.6.0 JDK Modules com.sun.java
5.6.0 JDK Modules sun
6.6.0 JDK Platform
7.Ajax
8.Apache Harmony Java SE
9.Aspect oriented
10.Authentication Authorization
11.Blogger System
12.Build
13.Byte Code
14.Cache
15.Chart
16.Chat
17.Code Analyzer
18.Collaboration
19.Content Management System
20.Database Client
21.Database DBMS
22.Database JDBC Connection Pool
23.Database ORM
24.Development
25.EJB Server
26.ERP CRM Financial
27.ESB
28.Forum
29.Game
30.GIS
31.Graphic 3D
32.Graphic Library
33.Groupware
34.HTML Parser
35.IDE
36.IDE Eclipse
37.IDE Netbeans
38.Installer
39.Internationalization Localization
40.Inversion of Control
41.Issue Tracking
42.J2EE
43.J2ME
44.JBoss
45.JMS
46.JMX
47.Library
48.Mail Clients
49.Music
50.Net
51.Parser
52.PDF
53.Portal
54.Profiler
55.Project Management
56.Report
57.RSS RDF
58.Rule Engine
59.Science
60.Scripting
61.Search Engine
62.Security
63.Sevlet Container
64.Source Control
65.Swing Library
66.Template Engine
67.Test Coverage
68.Testing
69.UML
70.Web Crawler
71.Web Framework
72.Web Mail
73.Web Server
74.Web Services
75.Web Services apache cxf 2.2.6
76.Web Services AXIS2
77.Wiki Engine
78.Workflow Engines
79.XML
80.XML UI
Java Source Code / Java Documentation » 6.0 JDK Core » net » java.net 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


0001        /*
0002         * Copyright 2000-2006 Sun Microsystems, Inc.  All Rights Reserved.
0003         * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
0004         *
0005         * This code is free software; you can redistribute it and/or modify it
0006         * under the terms of the GNU General Public License version 2 only, as
0007         * published by the Free Software Foundation.  Sun designates this
0008         * particular file as subject to the "Classpath" exception as provided
0009         * by Sun in the LICENSE file that accompanied this code.
0010         *
0011         * This code is distributed in the hope that it will be useful, but WITHOUT
0012         * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
0013         * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
0014         * version 2 for more details (a copy is included in the LICENSE file that
0015         * accompanied this code).
0016         *
0017         * You should have received a copy of the GNU General Public License version
0018         * 2 along with this work; if not, write to the Free Software Foundation,
0019         * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
0020         *
0021         * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
0022         * CA 95054 USA or visit www.sun.com if you need additional information or
0023         * have any questions.
0024         */
0025
0026        package java.net;
0027
0028        import java.io.IOException;
0029        import java.io.InvalidObjectException;
0030        import java.io.ObjectInputStream;
0031        import java.io.ObjectOutputStream;
0032        import java.io.Serializable;
0033        import java.nio.ByteBuffer;
0034        import java.nio.CharBuffer;
0035        import java.nio.charset.CharsetDecoder;
0036        import java.nio.charset.CharsetEncoder;
0037        import java.nio.charset.CoderResult;
0038        import java.nio.charset.CodingErrorAction;
0039        import java.nio.charset.CharacterCodingException;
0040        import java.text.Normalizer;
0041        import sun.nio.cs.ThreadLocalCoders;
0042
0043        import java.lang.Character; // for javadoc
0044        import java.lang.NullPointerException; // for javadoc
0045
0046        /**
0047         * Represents a Uniform Resource Identifier (URI) reference.
0048         *
0049         * <p> Aside from some minor deviations noted below, an instance of this 
0050         * class represents a URI reference as defined by
0051         * <a href="http://www.ietf.org/rfc/rfc2396.txt""><i>RFC&nbsp;2396: Uniform
0052         * Resource Identifiers (URI): Generic Syntax</i></a>, amended by <a
0053         * href="http://www.ietf.org/rfc/rfc2732.txt"><i>RFC&nbsp;2732: Format for
0054         * Literal IPv6 Addresses in URLs</i></a>. The Literal IPv6 address format
0055         * also supports scope_ids. The syntax and usage of scope_ids is described
0056         * <a href="Inet6Address.html#scoped">here</a>.
0057         * This class provides constructors for creating URI instances from
0058         * their components or by parsing their string forms, methods for accessing the
0059         * various components of an instance, and methods for normalizing, resolving,
0060         * and relativizing URI instances.  Instances of this class are immutable.
0061         *
0062         *
0063         * <h4> URI syntax and components </h4>
0064         *
0065         * At the highest level a URI reference (hereinafter simply "URI") in string
0066         * form has the syntax
0067         *
0068         * <blockquote>
0069         * [<i>scheme</i><tt><b>:</b></tt><i></i>]<i>scheme-specific-part</i>[<tt><b>#</b></tt><i>fragment</i>]
0070         * </blockquote>
0071         *
0072         * where square brackets [...] delineate optional components and the characters
0073         * <tt><b>:</b></tt> and <tt><b>#</b></tt> stand for themselves.
0074         *
0075         * <p> An <i>absolute</i> URI specifies a scheme; a URI that is not absolute is
0076         * said to be <i>relative</i>.  URIs are also classified according to whether
0077         * they are <i>opaque</i> or <i>hierarchical</i>.
0078         *
0079         * <p> An <i>opaque</i> URI is an absolute URI whose scheme-specific part does
0080         * not begin with a slash character (<tt>'/'</tt>).  Opaque URIs are not
0081         * subject to further parsing.  Some examples of opaque URIs are:
0082         *
0083         * <blockquote><table cellpadding=0 cellspacing=0 summary="layout">
0084         * <tr><td><tt>mailto:java-net@java.sun.com</tt><td></tr>
0085         * <tr><td><tt>news:comp.lang.java</tt><td></tr>
0086         * <tr><td><tt>urn:isbn:096139210x</tt></td></tr>
0087         * </table></blockquote>
0088         *
0089         * <p> A <i>hierarchical</i> URI is either an absolute URI whose
0090         * scheme-specific part begins with a slash character, or a relative URI, that
0091         * is, a URI that does not specify a scheme.  Some examples of hierarchical
0092         * URIs are:
0093         *
0094         * <blockquote>
0095         * <tt>http://java.sun.com/j2se/1.3/</tt><br>
0096         * <tt>docs/guide/collections/designfaq.html#28</tt><br>
0097         * <tt>../../../demo/jfc/SwingSet2/src/SwingSet2.java</tt><br>
0098         * <tt>file:///~/calendar</tt>
0099         * </blockquote>
0100         *
0101         * <p> A hierarchical URI is subject to further parsing according to the syntax
0102         *
0103         * <blockquote>
0104         * [<i>scheme</i><tt><b>:</b></tt>][<tt><b>//</b></tt><i>authority</i>][<i>path</i>][<tt><b>?</b></tt><i>query</i>][<tt><b>#</b></tt><i>fragment</i>]
0105         * </blockquote>
0106         *
0107         * where the characters <tt><b>:</b></tt>, <tt><b>/</b></tt>,
0108         * <tt><b>?</b></tt>, and <tt><b>#</b></tt> stand for themselves.  The
0109         * scheme-specific part of a hierarchical URI consists of the characters
0110         * between the scheme and fragment components.
0111         *
0112         * <p> The authority component of a hierarchical URI is, if specified, either
0113         * <i>server-based</i> or <i>registry-based</i>.  A server-based authority
0114         * parses according to the familiar syntax
0115         *
0116         * <blockquote>
0117         * [<i>user-info</i><tt><b>@</b></tt>]<i>host</i>[<tt><b>:</b></tt><i>port</i>]
0118         * </blockquote>
0119         *
0120         * where the characters <tt><b>@</b></tt> and <tt><b>:</b></tt> stand for
0121         * themselves.  Nearly all URI schemes currently in use are server-based.  An
0122         * authority component that does not parse in this way is considered to be
0123         * registry-based.
0124         *
0125         * <p> The path component of a hierarchical URI is itself said to be absolute
0126         * if it begins with a slash character (<tt>'/'</tt>); otherwise it is
0127         * relative.  The path of a hierarchical URI that is either absolute or
0128         * specifies an authority is always absolute.
0129         *
0130         * <p> All told, then, a URI instance has the following nine components:
0131         *
0132         * <blockquote><table summary="Describes the components of a URI:scheme,scheme-specific-part,authority,user-info,host,port,path,query,fragment">
0133         * <tr><th><i>Component</i></th><th><i>Type</i></th></tr>
0134         * <tr><td>scheme</td><td><tt>String</tt></td></tr>
0135         * <tr><td>scheme-specific-part&nbsp;&nbsp;&nbsp;&nbsp;</td><td><tt>String</tt></td></tr>
0136         * <tr><td>authority</td><td><tt>String</tt></td></tr>
0137         * <tr><td>user-info</td><td><tt>String</tt></td></tr>
0138         * <tr><td>host</td><td><tt>String</tt></td></tr>
0139         * <tr><td>port</td><td><tt>int</tt></td></tr>
0140         * <tr><td>path</td><td><tt>String</tt></td></tr>
0141         * <tr><td>query</td><td><tt>String</tt></td></tr>
0142         * <tr><td>fragment</td><td><tt>String</tt></td></tr>
0143         * </table></blockquote>
0144         *
0145         * In a given instance any particular component is either <i>undefined</i> or
0146         * <i>defined</i> with a distinct value.  Undefined string components are
0147         * represented by <tt>null</tt>, while undefined integer components are
0148         * represented by <tt>-1</tt>.  A string component may be defined to have the
0149         * empty string as its value; this is not equivalent to that component being
0150         * undefined.
0151         *
0152         * <p> Whether a particular component is or is not defined in an instance
0153         * depends upon the type of the URI being represented.  An absolute URI has a
0154         * scheme component.  An opaque URI has a scheme, a scheme-specific part, and
0155         * possibly a fragment, but has no other components.  A hierarchical URI always
0156         * has a path (though it may be empty) and a scheme-specific-part (which at
0157         * least contains the path), and may have any of the other components.  If the
0158         * authority component is present and is server-based then the host component
0159         * will be defined and the user-information and port components may be defined.
0160         *
0161         *
0162         * <h4> Operations on URI instances </h4>
0163         *
0164         * The key operations supported by this class are those of
0165         * <i>normalization</i>, <i>resolution</i>, and <i>relativization</i>.
0166         *
0167         * <p> <i>Normalization</i> is the process of removing unnecessary <tt>"."</tt>
0168         * and <tt>".."</tt> segments from the path component of a hierarchical URI.
0169         * Each <tt>"."</tt> segment is simply removed.  A <tt>".."</tt> segment is
0170         * removed only if it is preceded by a non-<tt>".."</tt> segment.
0171         * Normalization has no effect upon opaque URIs.
0172         *
0173         * <p> <i>Resolution</i> is the process of resolving one URI against another,
0174         * <i>base</i> URI.  The resulting URI is constructed from components of both
0175         * URIs in the manner specified by RFC&nbsp;2396, taking components from the
0176         * base URI for those not specified in the original.  For hierarchical URIs,
0177         * the path of the original is resolved against the path of the base and then
0178         * normalized.  The result, for example, of resolving
0179         *
0180         * <blockquote>
0181         * <tt>docs/guide/collections/designfaq.html#28&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt>(1)
0182         * </blockquote>
0183         *
0184         * against the base URI <tt>http://java.sun.com/j2se/1.3/</tt> is the result
0185         * URI
0186         *
0187         * <blockquote>
0188         * <tt>http://java.sun.com/j2se/1.3/docs/guide/collections/designfaq.html#28</tt>
0189         * </blockquote>
0190         *
0191         * Resolving the relative URI
0192         *
0193         * <blockquote>
0194         * <tt>../../../demo/jfc/SwingSet2/src/SwingSet2.java&nbsp;&nbsp;&nbsp;&nbsp;</tt>(2)
0195         * </blockquote>
0196         *
0197         * against this result yields, in turn,
0198         *
0199         * <blockquote>
0200         * <tt>http://java.sun.com/j2se/1.3/demo/jfc/SwingSet2/src/SwingSet2.java</tt>
0201         * </blockquote>
0202         *
0203         * Resolution of both absolute and relative URIs, and of both absolute and
0204         * relative paths in the case of hierarchical URIs, is supported.  Resolving
0205         * the URI <tt>file:///~calendar</tt> against any other URI simply yields the
0206         * original URI, since it is absolute.  Resolving the relative URI (2) above
0207         * against the relative base URI (1) yields the normalized, but still relative,
0208         * URI
0209         *
0210         * <blockquote>
0211         * <tt>demo/jfc/SwingSet2/src/SwingSet2.java</tt>
0212         * </blockquote>
0213         *
0214         * <p> <i>Relativization</i>, finally, is the inverse of resolution: For any
0215         * two normalized URIs <i>u</i> and&nbsp;<i>v</i>,
0216         *
0217         * <blockquote>
0218         *   <i>u</i><tt>.relativize(</tt><i>u</i><tt>.resolve(</tt><i>v</i><tt>)).equals(</tt><i>v</i><tt>)</tt>&nbsp;&nbsp;and<br>
0219         *   <i>u</i><tt>.resolve(</tt><i>u</i><tt>.relativize(</tt><i>v</i><tt>)).equals(</tt><i>v</i><tt>)</tt>&nbsp;&nbsp;.<br>
0220         * </blockquote>
0221         *
0222         * This operation is often useful when constructing a document containing URIs
0223         * that must be made relative to the base URI of the document wherever
0224         * possible.  For example, relativizing the URI
0225         *
0226         * <blockquote>
0227         * <tt>http://java.sun.com/j2se/1.3/docs/guide/index.html</tt>
0228         * </blockquote>
0229         *
0230         * against the base URI
0231         *
0232         * <blockquote>
0233         * <tt>http://java.sun.com/j2se/1.3</tt>
0234         * </blockquote>
0235         *
0236         * yields the relative URI <tt>docs/guide/index.html</tt>.
0237         *
0238         *
0239         * <h4> Character categories </h4>
0240         *
0241         * RFC&nbsp;2396 specifies precisely which characters are permitted in the
0242         * various components of a URI reference.  The following categories, most of
0243         * which are taken from that specification, are used below to describe these
0244         * constraints:
0245         *
0246         * <blockquote><table cellspacing=2 summary="Describes categories alpha,digit,alphanum,unreserved,punct,reserved,escaped,and other">
0247         *   <tr><th valign=top><i>alpha</i></th>
0248         *       <td>The US-ASCII alphabetic characters,
0249         * 	  <tt>'A'</tt>&nbsp;through&nbsp;<tt>'Z'</tt>
0250         * 	  and <tt>'a'</tt>&nbsp;through&nbsp;<tt>'z'</tt></td></tr>
0251         *   <tr><th valign=top><i>digit</i></th>
0252         *       <td>The US-ASCII decimal digit characters,
0253         *       <tt>'0'</tt>&nbsp;through&nbsp;<tt>'9'</tt></td></tr>
0254         *   <tr><th valign=top><i>alphanum</i></th>
0255         *       <td>All <i>alpha</i> and <i>digit</i> characters</td></tr>
0256         *   <tr><th valign=top><i>unreserved</i>&nbsp;&nbsp;&nbsp;&nbsp;</th>
0257         *       <td>All <i>alphanum</i> characters together with those in the string
0258         * 	  <tt>"_-!.~'()*"</tt></td></tr>
0259         *   <tr><th valign=top><i>punct</i></th>
0260         *       <td>The characters in the string <tt>",;:$&+="</tt></td></tr>
0261         *   <tr><th valign=top><i>reserved</i></th>
0262         *       <td>All <i>punct</i> characters together with those in the string
0263         * 	  <tt>"?/[]@"</tt></td></tr>
0264         *   <tr><th valign=top><i>escaped</i></th>
0265         *       <td>Escaped octets, that is, triplets consisting of the percent
0266         *           character (<tt>'%'</tt>) followed by two hexadecimal digits
0267         *           (<tt>'0'</tt>-<tt>'9'</tt>, <tt>'A'</tt>-<tt>'F'</tt>, and
0268         *           <tt>'a'</tt>-<tt>'f'</tt>)</td></tr>
0269         *   <tr><th valign=top><i>other</i></th>
0270         *       <td>The Unicode characters that are not in the US-ASCII character set,
0271         *           are not control characters (according to the {@link
0272         *           java.lang.Character#isISOControl(char) Character.isISOControl}
0273         * 	     method), and are not space characters (according to the {@link
0274         * 	     java.lang.Character#isSpaceChar(char) Character.isSpaceChar}
0275         * 	     method)&nbsp;&nbsp;<i>(<b>Deviation from RFC 2396</b>, which is
0276         * 	     limited to US-ASCII)</i></td></tr>
0277         * </table></blockquote>
0278         *
0279         * <p><a name="legal-chars"></a> The set of all legal URI characters consists of
0280         * the <i>unreserved</i>, <i>reserved</i>, <i>escaped</i>, and <i>other</i>
0281         * characters.
0282         *
0283         *
0284         * <h4> Escaped octets, quotation, encoding, and decoding </h4>
0285         *
0286         * RFC 2396 allows escaped octets to appear in the user-info, path, query, and
0287         * fragment components.  Escaping serves two purposes in URIs:
0288         *
0289         * <ul>
0290         *
0291         *   <li><p> To <i>encode</i> non-US-ASCII characters when a URI is required to
0292         *   conform strictly to RFC&nbsp;2396 by not containing any <i>other</i>
0293         *   characters.  </p></li>
0294         *
0295         *   <li><p> To <i>quote</i> characters that are otherwise illegal in a
0296         *   component.  The user-info, path, query, and fragment components differ
0297         *   slightly in terms of which characters are considered legal and illegal.
0298         *   </p></li>
0299         *
0300         * </ul>
0301         *
0302         * These purposes are served in this class by three related operations:
0303         *
0304         * <ul>
0305         *
0306         *   <li><p><a name="encode"></a> A character is <i>encoded</i> by replacing it
0307         *   with the sequence of escaped octets that represent that character in the
0308         *   UTF-8 character set.  The Euro currency symbol (<tt>'&#92;u20AC'</tt>),
0309         *   for example, is encoded as <tt>"%E2%82%AC"</tt>.  <i>(<b>Deviation from
0310         *   RFC&nbsp;2396</b>, which does not specify any particular character
0311         *   set.)</i> </p></li>
0312         *
0313         *   <li><p><a name="quote"></a> An illegal character is <i>quoted</i> simply by
0314         *   encoding it.  The space character, for example, is quoted by replacing it
0315         *   with <tt>"%20"</tt>.  UTF-8 contains US-ASCII, hence for US-ASCII
0316         *   characters this transformation has exactly the effect required by
0317         *   RFC&nbsp;2396. </p></li>
0318         *
0319         *   <li><p><a name="decode"></a>
0320         *   A sequence of escaped octets is <i>decoded</i> by
0321         *   replacing it with the sequence of characters that it represents in the
0322         *   UTF-8 character set.  UTF-8 contains US-ASCII, hence decoding has the
0323         *   effect of de-quoting any quoted US-ASCII characters as well as that of
0324         *   decoding any encoded non-US-ASCII characters.  If a <a
0325         *   href="../nio/charset/CharsetDecoder.html#ce">decoding error</a> occurs
0326         *   when decoding the escaped octets then the erroneous octets are replaced by
0327         *   <tt>'&#92;uFFFD'</tt>, the Unicode replacement character.  </p></li>
0328         *
0329         * </ul>
0330         *
0331         * These operations are exposed in the constructors and methods of this class
0332         * as follows:
0333         *
0334         * <ul>
0335         *
0336         *   <li><p> The {@link #URI(java.lang.String) <code>single-argument
0337         *   constructor</code>} requires any illegal characters in its argument to be
0338         *   quoted and preserves any escaped octets and <i>other</i> characters that
0339         *   are present.  </p></li>
0340         *
0341         *   <li><p> The {@link
0342         *   #URI(java.lang.String,java.lang.String,java.lang.String,int,java.lang.String,java.lang.String,java.lang.String)
0343         *   <code>multi-argument constructors</code>} quote illegal characters as
0344         *   required by the components in which they appear.  The percent character
0345         *   (<tt>'%'</tt>) is always quoted by these constructors.  Any <i>other</i>
0346         *   characters are preserved.  </p></li>
0347         *
0348         *   <li><p> The {@link #getRawUserInfo() getRawUserInfo}, {@link #getRawPath()
0349         *   getRawPath}, {@link #getRawQuery() getRawQuery}, {@link #getRawFragment()
0350         *   getRawFragment}, {@link #getRawAuthority() getRawAuthority}, and {@link
0351         *   #getRawSchemeSpecificPart() getRawSchemeSpecificPart} methods return the
0352         *   values of their corresponding components in raw form, without interpreting
0353         *   any escaped octets.  The strings returned by these methods may contain
0354         *   both escaped octets and <i>other</i> characters, and will not contain any
0355         *   illegal characters.  </p></li>
0356         *
0357         *   <li><p> The {@link #getUserInfo() getUserInfo}, {@link #getPath()
0358         *   getPath}, {@link #getQuery() getQuery}, {@link #getFragment()
0359         *   getFragment}, {@link #getAuthority() getAuthority}, and {@link
0360         *   #getSchemeSpecificPart() getSchemeSpecificPart} methods decode any escaped
0361         *   octets in their corresponding components.  The strings returned by these
0362         *   methods may contain both <i>other</i> characters and illegal characters,
0363         *   and will not contain any escaped octets.  </p></li>
0364         *
0365         *   <li><p> The {@link #toString() toString} method returns a URI string with
0366         *   all necessary quotation but which may contain <i>other</i> characters.
0367         *   </p></li>
0368         *
0369         *   <li><p> The {@link #toASCIIString() toASCIIString} method returns a fully
0370         *   quoted and encoded URI string that does not contain any <i>other</i>
0371         *   characters.  </p></li>
0372         *
0373         * </ul>
0374         *
0375         *
0376         * <h4> Identities </h4>
0377         *
0378         * For any URI <i>u</i>, it is always the case that
0379         *
0380         * <blockquote>
0381         * <tt>new URI(</tt><i>u</i><tt>.toString()).equals(</tt><i>u</i><tt>)</tt>&nbsp;.
0382         * </blockquote>
0383         *
0384         * For any URI <i>u</i> that does not contain redundant syntax such as two
0385         * slashes before an empty authority (as in <tt>file:///tmp/</tt>&nbsp;) or a
0386         * colon following a host name but no port (as in
0387         * <tt>http://java.sun.com:</tt>&nbsp;), and that does not encode characters
0388         * except those that must be quoted, the following identities also hold:
0389         *
0390         * <blockquote>
0391         * <tt>new URI(</tt><i>u</i><tt>.getScheme(),<br>
0392         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getSchemeSpecificPart(),<br>
0393         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getFragment())<br>
0394         * .equals(</tt><i>u</i><tt>)</tt>
0395         * </blockquote>
0396         *
0397         * in all cases,
0398         *
0399         * <blockquote>
0400         * <tt>new URI(</tt><i>u</i><tt>.getScheme(),<br>
0401         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getUserInfo(),&nbsp;</tt><i>u</i><tt>.getAuthority(),<br>
0402         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getPath(),&nbsp;</tt><i>u</i><tt>.getQuery(),<br>
0403         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getFragment())<br>
0404         * .equals(</tt><i>u</i><tt>)</tt>
0405         * </blockquote>
0406         *
0407         * if <i>u</i> is hierarchical, and
0408         *
0409         * <blockquote>
0410         * <tt>new URI(</tt><i>u</i><tt>.getScheme(),<br>
0411         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getUserInfo(),&nbsp;</tt><i>u</i><tt>.getHost(),&nbsp;</tt><i>u</i><tt>.getPort(),<br>
0412         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getPath(),&nbsp;</tt><i>u</i><tt>.getQuery(),<br>
0413         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getFragment())<br>
0414         * .equals(</tt><i>u</i><tt>)</tt>
0415         * </blockquote>
0416         *
0417         * if <i>u</i> is hierarchical and has either no authority or a server-based
0418         * authority.
0419         *
0420         *
0421         * <h4> URIs, URLs, and URNs </h4>
0422         *
0423         * A URI is a uniform resource <i>identifier</i> while a URL is a uniform
0424         * resource <i>locator</i>.  Hence every URL is a URI, abstractly speaking, but
0425         * not every URI is a URL.  This is because there is another subcategory of
0426         * URIs, uniform resource <i>names</i> (URNs), which name resources but do not
0427         * specify how to locate them.  The <tt>mailto</tt>, <tt>news</tt>, and
0428         * <tt>isbn</tt> URIs shown above are examples of URNs.
0429         *
0430         * <p> The conceptual distinction between URIs and URLs is reflected in the
0431         * differences between this class and the {@link URL} class.
0432         *
0433         * <p> An instance of this class represents a URI reference in the syntactic
0434         * sense defined by RFC&nbsp;2396.  A URI may be either absolute or relative.
0435         * A URI string is parsed according to the generic syntax without regard to the
0436         * scheme, if any, that it specifies.  No lookup of the host, if any, is
0437         * performed, and no scheme-dependent stream handler is constructed.  Equality,
0438         * hashing, and comparison are defined strictly in terms of the character
0439         * content of the instance.  In other words, a URI instance is little more than
0440         * a structured string that supports the syntactic, scheme-independent
0441         * operations of comparison, normalization, resolution, and relativization.
0442         *
0443         * <p> An instance of the {@link URL} class, by contrast, represents the
0444         * syntactic components of a URL together with some of the information required
0445         * to access the resource that it describes.  A URL must be absolute, that is,
0446         * it must always specify a scheme.  A URL string is parsed according to its
0447         * scheme.  A stream handler is always established for a URL, and in fact it is
0448         * impossible to create a URL instance for a scheme for which no handler is
0449         * available.  Equality and hashing depend upon both the scheme and the
0450         * Internet address of the host, if any; comparison is not defined.  In other
0451         * words, a URL is a structured string that supports the syntactic operation of
0452         * resolution as well as the network I/O operations of looking up the host and
0453         * opening a connection to the specified resource.
0454         *
0455         *
0456         * @version 1.55, 07/05/05
0457         * @author Mark Reinhold
0458         * @since 1.4
0459         *
0460         * @see <a href="http://ietf.org/rfc/rfc2279.txt"><i>RFC&nbsp;2279: UTF-8, a
0461         * transformation format of ISO 10646</i></a>, <br><a
0462         * href="http://www.ietf.org/rfc/rfc2373.txt"><i>RFC&nbsp;2373: IPv6 Addressing
0463         * Architecture</i></a>, <br><a
0464         * href="http://www.ietf.org/rfc/rfc2396.txt""><i>RFC&nbsp;2396: Uniform
0465         * Resource Identifiers (URI): Generic Syntax</i></a>, <br><a
0466         * href="http://www.ietf.org/rfc/rfc2732.txt"><i>RFC&nbsp;2732: Format for
0467         * Literal IPv6 Addresses in URLs</i></a>, <br><a
0468         * href="URISyntaxException.html">URISyntaxException</a>
0469         */
0470
0471        public final class URI implements  Comparable<URI>, Serializable {
0472
0473            // Note: Comments containing the word "ASSERT" indicate places where a
0474            // throw of an InternalError should be replaced by an appropriate assertion
0475            // statement once asserts are enabled in the build.
0476
0477            static final long serialVersionUID = -6052424284110960213L;
0478
0479            // -- Properties and components of this instance --
0480
0481            // Components of all URIs: [<scheme>:]<scheme-specific-part>[#<fragment>]
0482            private transient String scheme; // null ==> relative URI
0483            private transient String fragment;
0484
0485            // Hierarchical URI components: [//<authority>]<path>[?<query>]
0486            private transient String authority; // Registry or server
0487
0488            // Server-based authority: [<userInfo>@]<host>[:<port>]
0489            private transient String userInfo;
0490            private transient String host; // null ==> registry-based
0491            private transient int port = -1; // -1 ==> undefined
0492
0493            // Remaining components of hierarchical URIs
0494            private transient String path; // null ==> opaque
0495            private transient String query;
0496
0497            // The remaining fields may be computed on demand
0498
0499            private volatile transient String schemeSpecificPart;
0500            private volatile transient int hash; // Zero ==> undefined
0501
0502            private volatile transient String decodedUserInfo = null;
0503            private volatile transient String decodedAuthority = null;
0504            private volatile transient String decodedPath = null;
0505            private volatile transient String decodedQuery = null;
0506            private volatile transient String decodedFragment = null;
0507            private volatile transient String decodedSchemeSpecificPart = null;
0508
0509            /**
0510             * The string form of this URI.
0511             *
0512             * @serial
0513             */
0514            private volatile String string; // The only serializable field
0515
0516            // -- Constructors and factories --
0517
0518            private URI() {
0519            } // Used internally
0520
0521            /**
0522             * Constructs a URI by parsing the given string.
0523             *
0524             * <p> This constructor parses the given string exactly as specified by the
0525             * grammar in <a
0526             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
0527             * Appendix&nbsp;A, <b><i>except for the following deviations:</i></b> </p>
0528             *
0529             * <ul type=disc>
0530             *
0531             *   <li><p> An empty authority component is permitted as long as it is
0532             *   followed by a non-empty path, a query component, or a fragment
0533             *   component.  This allows the parsing of URIs such as
0534             *   <tt>"file:///foo/bar"</tt>, which seems to be the intent of
0535             *   RFC&nbsp;2396 although the grammar does not permit it.  If the
0536             *   authority component is empty then the user-information, host, and port
0537             *   components are undefined. </p></li>
0538             *
0539             *   <li><p> Empty relative paths are permitted; this seems to be the
0540             *   intent of RFC&nbsp;2396 although the grammar does not permit it.  The
0541             *   primary consequence of this deviation is that a standalone fragment
0542             *   such as <tt>"#foo"</tt> parses as a relative URI with an empty path
0543             *   and the given fragment, and can be usefully <a
0544             *   href="#resolve-frag">resolved</a> against a base URI.
0545             *
0546             *   <li><p> IPv4 addresses in host components are parsed rigorously, as
0547             *   specified by <a
0548             *   href="http://www.ietf.org/rfc/rfc2732.txt">RFC&nbsp;2732</a>: Each
0549             *   element of a dotted-quad address must contain no more than three
0550             *   decimal digits.  Each element is further constrained to have a value
0551             *   no greater than 255. </p></li>
0552             *
0553             *   <li> <p> Hostnames in host components that comprise only a single
0554             *   domain label are permitted to start with an <i>alphanum</i> 
0555             *   character. This seems to be the intent of <a
0556             *   href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>
0557             *   section&nbsp;3.2.2 although the grammar does not permit it. The
0558             *   consequence of this deviation is that the authority component of a
0559             *   hierarchical URI such as <tt>s://123</tt>, will parse as a server-based 
0560             *   authority. </p></li>
0561             *
0562             *   <li><p> IPv6 addresses are permitted for the host component.  An IPv6
0563             *   address must be enclosed in square brackets (<tt>'['</tt> and
0564             *   <tt>']'</tt>) as specified by <a
0565             *   href="http://www.ietf.org/rfc/rfc2732.txt">RFC&nbsp;2732</a>.  The
0566             *   IPv6 address itself must parse according to <a
0567             *   href="http://www.ietf.org/rfc/rfc2373.txt">RFC&nbsp;2373</a>.  IPv6
0568             *   addresses are further constrained to describe no more than sixteen
0569             *   bytes of address information, a constraint implicit in RFC&nbsp;2373
0570             *   but not expressible in the grammar. </p></li>
0571             *
0572             *   <li><p> Characters in the <i>other</i> category are permitted wherever
0573             *   RFC&nbsp;2396 permits <i>escaped</i> octets, that is, in the
0574             *   user-information, path, query, and fragment components, as well as in
0575             *   the authority component if the authority is registry-based.  This
0576             *   allows URIs to contain Unicode characters beyond those in the US-ASCII
0577             *   character set. </p></li>
0578             *
0579             * </ul>
0580             *
0581             * @param  str   The string to be parsed into a URI
0582             *
0583             * @throws  NullPointerException
0584             *          If <tt>str</tt> is <tt>null</tt>
0585             *
0586             * @throws  URISyntaxException
0587             *          If the given string violates RFC&nbsp;2396, as augmented
0588             *          by the above deviations
0589             */
0590            public URI(String str) throws URISyntaxException {
0591                new Parser(str).parse(false);
0592            }
0593
0594            /**
0595             * Constructs a hierarchical URI from the given components.
0596             *
0597             * <p> If a scheme is given then the path, if also given, must either be
0598             * empty or begin with a slash character (<tt>'/'</tt>).  Otherwise a
0599             * component of the new URI may be left undefined by passing <tt>null</tt>
0600             * for the corresponding parameter or, in the case of the <tt>port</tt>
0601             * parameter, by passing <tt>-1</tt>.
0602             *
0603             * <p> This constructor first builds a URI string from the given components
0604             * according to the rules specified in <a
0605             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
0606             * section&nbsp;5.2, step&nbsp;7: </p>
0607             *
0608             * <ol>
0609             *
0610             *   <li><p> Initially, the result string is empty. </p></li>
0611             *
0612             *   <li><p> If a scheme is given then it is appended to the result,
0613             *   followed by a colon character (<tt>':'</tt>).  </p></li>
0614             *
0615             *   <li><p> If user information, a host, or a port are given then the
0616             *   string <tt>"//"</tt> is appended.  </p></li>
0617             *
0618             *   <li><p> If user information is given then it is appended, followed by
0619             *   a commercial-at character (<tt>'@'</tt>).  Any character not in the
0620             *   <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
0621             *   categories is <a href="#quote">quoted</a>.  </p></li>
0622             *
0623             *   <li><p> If a host is given then it is appended.  If the host is a
0624             *   literal IPv6 address but is not enclosed in square brackets
0625             *   (<tt>'['</tt> and <tt>']'</tt>) then the square brackets are added.
0626             *   </p></li>
0627             *
0628             *   <li><p> If a port number is given then a colon character
0629             *   (<tt>':'</tt>) is appended, followed by the port number in decimal.
0630             *   </p></li>
0631             *
0632             *   <li><p> If a path is given then it is appended.  Any character not in
0633             *   the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
0634             *   categories, and not equal to the slash character (<tt>'/'</tt>) or the
0635             *   commercial-at character (<tt>'@'</tt>), is quoted.  </p></li>
0636             *
0637             *   <li><p> If a query is given then a question-mark character
0638             *   (<tt>'?'</tt>) is appended, followed by the query.  Any character that
0639             *   is not a <a href="#legal-chars">legal URI character</a> is quoted.
0640             *   </p></li>
0641             *
0642             *   <li><p> Finally, if a fragment is given then a hash character
0643             *   (<tt>'#'</tt>) is appended, followed by the fragment.  Any character
0644             *   that is not a legal URI character is quoted.  </p></li>
0645             *
0646             * </ol>
0647             *
0648             * <p> The resulting URI string is then parsed as if by invoking the {@link
0649             * #URI(String)} constructor and then invoking the {@link
0650             * #parseServerAuthority()} method upon the result; this may cause a {@link
0651             * URISyntaxException} to be thrown.  </p>
0652             *
0653             * @param   scheme    Scheme name
0654             * @param   userInfo  User name and authorization information
0655             * @param   host      Host name
0656             * @param   port      Port number
0657             * @param   path      Path
0658             * @param   query     Query
0659             * @param   fragment  Fragment
0660             *
0661             * @throws URISyntaxException
0662             *         If both a scheme and a path are given but the path is relative,
0663             *         if the URI string constructed from the given components violates
0664             *         RFC&nbsp;2396, or if the authority component of the string is
0665             *         present but cannot be parsed as a server-based authority
0666             */
0667            public URI(String scheme, String userInfo, String host, int port,
0668                    String path, String query, String fragment)
0669                    throws URISyntaxException {
0670                String s = toString(scheme, null, null, userInfo, host, port,
0671                        path, query, fragment);
0672                checkPath(s, scheme, path);
0673                new Parser(s).parse(true);
0674            }
0675
0676            /**
0677             * Constructs a hierarchical URI from the given components.
0678             *
0679             * <p> If a scheme is given then the path, if also given, must either be
0680             * empty or begin with a slash character (<tt>'/'</tt>).  Otherwise a
0681             * component of the new URI may be left undefined by passing <tt>null</tt>
0682             * for the corresponding parameter.
0683             *
0684             * <p> This constructor first builds a URI string from the given components
0685             * according to the rules specified in <a
0686             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
0687             * section&nbsp;5.2, step&nbsp;7: </p>
0688             *
0689             * <ol>
0690             *
0691             *   <li><p> Initially, the result string is empty.  </p></li>
0692             *
0693             *   <li><p> If a scheme is given then it is appended to the result,
0694             *   followed by a colon character (<tt>':'</tt>).  </p></li>
0695             *
0696             *   <li><p> If an authority is given then the string <tt>"//"</tt> is
0697             *   appended, followed by the authority.  If the authority contains a
0698             *   literal IPv6 address then the address must be enclosed in square
0699             *   brackets (<tt>'['</tt> and <tt>']'</tt>).  Any character not in the
0700             *   <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
0701             *   categories, and not equal to the commercial-at character
0702             *   (<tt>'@'</tt>), is <a href="#quote">quoted</a>.  </p></li>
0703             *
0704             *   <li><p> If a path is given then it is appended.  Any character not in
0705             *   the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
0706             *   categories, and not equal to the slash character (<tt>'/'</tt>) or the
0707             *   commercial-at character (<tt>'@'</tt>), is quoted.  </p></li>
0708             *
0709             *   <li><p> If a query is given then a question-mark character
0710             *   (<tt>'?'</tt>) is appended, followed by the query.  Any character that
0711             *   is not a <a href="#legal-chars">legal URI character</a> is quoted.
0712             *   </p></li>
0713             *
0714             *   <li><p> Finally, if a fragment is given then a hash character
0715             *   (<tt>'#'</tt>) is appended, followed by the fragment.  Any character
0716             *   that is not a legal URI character is quoted.  </p></li>
0717             *
0718             * </ol>
0719             *
0720             * <p> The resulting URI string is then parsed as if by invoking the {@link
0721             * #URI(String)} constructor and then invoking the {@link
0722             * #parseServerAuthority()} method upon the result; this may cause a {@link
0723             * URISyntaxException} to be thrown.  </p>
0724             *
0725             * @param   scheme     Scheme name
0726             * @param   authority  Authority
0727             * @param   path       Path
0728             * @param   query      Query
0729             * @param   fragment   Fragment
0730             *
0731             * @throws URISyntaxException
0732             *         If both a scheme and a path are given but the path is relative,
0733             *         if the URI string constructed from the given components violates
0734             *         RFC&nbsp;2396, or if the authority component of the string is
0735             *         present but cannot be parsed as a server-based authority
0736             */
0737            public URI(String scheme, String authority, String path,
0738                    String query, String fragment) throws URISyntaxException {
0739                String s = toString(scheme, null, authority, null, null, -1,
0740                        path, query, fragment);
0741                checkPath(s, scheme, path);
0742                new Parser(s).parse(false);
0743            }
0744
0745            /**
0746             * Constructs a hierarchical URI from the given components.
0747             *
0748             * <p> A component may be left undefined by passing <tt>null</tt>.
0749             *
0750             * <p> This convenience constructor works as if by invoking the
0751             * seven-argument constructor as follows:
0752             *
0753             * <blockquote><tt>
0754             * new&nbsp;{@link #URI(String, String, String, int, String, String, String)
0755             * URI}(scheme,&nbsp;null,&nbsp;host,&nbsp;-1,&nbsp;path,&nbsp;null,&nbsp;fragment);
0756             * </tt></blockquote>
0757             *
0758             * @param   scheme    Scheme name
0759             * @param   host      Host name
0760             * @param   path      Path
0761             * @param   fragment  Fragment
0762             *
0763             * @throws  URISyntaxException
0764             *          If the URI string constructed from the given components
0765             *          violates RFC&nbsp;2396
0766             */
0767            public URI(String scheme, String host, String path, String fragment)
0768                    throws URISyntaxException {
0769                this (scheme, null, host, -1, path, null, fragment);
0770            }
0771
0772            /**
0773             * Constructs a URI from the given components.
0774             *
0775             * <p> A component may be left undefined by passing <tt>null</tt>.
0776             *
0777             * <p> This constructor first builds a URI in string form using the given
0778             * components as follows:  </p>
0779             *
0780             * <ol>
0781             *
0782             *   <li><p> Initially, the result string is empty.  </p></li>
0783             *
0784             *   <li><p> If a scheme is given then it is appended to the result,
0785             *   followed by a colon character (<tt>':'</tt>).  </p></li>
0786             *
0787             *   <li><p> If a scheme-specific part is given then it is appended.  Any
0788             *   character that is not a <a href="#legal-chars">legal URI character</a>
0789             *   is <a href="#quote">quoted</a>.  </p></li>
0790             *
0791             *   <li><p> Finally, if a fragment is given then a hash character
0792             *   (<tt>'#'</tt>) is appended to the string, followed by the fragment.
0793             *   Any character that is not a legal URI character is quoted.  </p></li>
0794             *
0795             * </ol>
0796             *
0797             * <p> The resulting URI string is then parsed in order to create the new
0798             * URI instance as if by invoking the {@link #URI(String)} constructor;
0799             * this may cause a {@link URISyntaxException} to be thrown.  </p>
0800             *
0801             * @param   scheme    Scheme name
0802             * @param   ssp       Scheme-specific part
0803             * @param   fragment  Fragment
0804             *
0805             * @throws  URISyntaxException
0806             *          If the URI string constructed from the given components
0807             *          violates RFC&nbsp;2396
0808             */
0809            public URI(String scheme, String ssp, String fragment)
0810                    throws URISyntaxException {
0811                new Parser(toString(scheme, ssp, null, null, null, -1, null,
0812                        null, fragment)).parse(false);
0813            }
0814
0815            /**
0816             * Creates a URI by parsing the given string.
0817             *
0818             * <p> This convenience factory method works as if by invoking the {@link
0819             * #URI(String)} constructor; any {@link URISyntaxException} thrown by the
0820             * constructor is caught and wrapped in a new {@link
0821             * IllegalArgumentException} object, which is then thrown.
0822             *
0823             * <p> This method is provided for use in situations where it is known that
0824             * the given string is a legal URI, for example for URI constants declared
0825             * within in a program, and so it would be considered a programming error
0826             * for the string not to parse as such.  The constructors, which throw
0827             * {@link URISyntaxException} directly, should be used situations where a
0828             * URI is being constructed from user input or from some other source that
0829             * may be prone to errors.  </p>
0830             *
0831             * @param  str   The string to be parsed into a URI
0832             * @return The new URI
0833             *
0834             * @throws  NullPointerException
0835             *          If <tt>str</tt> is <tt>null</tt>
0836             *
0837             * @throws  IllegalArgumentException
0838             *          If the given string violates RFC&nbsp;2396
0839             */
0840            public static URI create(String str) {
0841                try {
0842                    return new URI(str);
0843                } catch (URISyntaxException x) {
0844                    IllegalArgumentException y = new IllegalArgumentException();
0845                    y.initCause(x);
0846                    throw y;
0847                }
0848            }
0849
0850            // -- Operations --
0851
0852            /**
0853             * Attempts to parse this URI's authority component, if defined, into
0854             * user-information, host, and port components.
0855             *
0856             * <p> If this URI's authority component has already been recognized as
0857             * being server-based then it will already have been parsed into
0858             * user-information, host, and port components.  In this case, or if this
0859             * URI has no authority component, this method simply returns this URI.
0860             *
0861             * <p> Otherwise this method attempts once more to parse the authority
0862             * component into user-information, host, and port components, and throws
0863             * an exception describing why the authority component could not be parsed
0864             * in that way.
0865             *
0866             * <p> This method is provided because the generic URI syntax specified in
0867             * <a href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>
0868             * cannot always distinguish a malformed server-based authority from a
0869             * legitimate registry-based authority.  It must therefore treat some
0870             * instances of the former as instances of the latter.  The authority
0871             * component in the URI string <tt>"//foo:bar"</tt>, for example, is not a
0872             * legal server-based authority but it is legal as a registry-based
0873             * authority.
0874             *
0875             * <p> In many common situations, for example when working URIs that are
0876             * known to be either URNs or URLs, the hierarchical URIs being used will
0877             * always be server-based.  They therefore must either be parsed as such or
0878             * treated as an error.  In these cases a statement such as
0879             *
0880             * <blockquote>
0881             * <tt>URI </tt><i>u</i><tt> = new URI(str).parseServerAuthority();</tt>
0882             * </blockquote>
0883             *
0884             * <p> can be used to ensure that <i>u</i> always refers to a URI that, if
0885             * it has an authority component, has a server-based authority with proper
0886             * user-information, host, and port components.  Invoking this method also
0887             * ensures that if the authority could not be parsed in that way then an
0888             * appropriate diagnostic message can be issued based upon the exception
0889             * that is thrown. </p>
0890             *
0891             * @return  A URI whose authority field has been parsed
0892             *          as a server-based authority
0893             *
0894             * @throws  URISyntaxException
0895             *          If the authority component of this URI is defined
0896             *          but cannot be parsed as a server-based authority
0897             *          according to RFC&nbsp;2396
0898             */
0899            public URI parseServerAuthority() throws URISyntaxException {
0900                // We could be clever and cache the error message and index from the
0901                // exception thrown during the original parse, but that would require
0902                // either more fields or a more-obscure representation.
0903                if ((host != null) || (authority == null))
0904                    return this ;
0905                defineString();
0906                new Parser(string).parse(true);
0907                return this ;
0908            }
0909
0910            /**
0911             * Normalizes this URI's path.
0912             *
0913             * <p> If this URI is opaque, or if its path is already in normal form,
0914             * then this URI is returned.  Otherwise a new URI is constructed that is
0915             * identical to this URI except that its path is computed by normalizing
0916             * this URI's path in a manner consistent with <a
0917             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
0918             * section&nbsp;5.2, step&nbsp;6, sub-steps&nbsp;c through&nbsp;f; that is:
0919             * </p>
0920             *
0921             * <ol>
0922             *
0923             *   <li><p> All <tt>"."</tt> segments are removed. </p></li>
0924             *
0925             *   <li><p> If a <tt>".."</tt> segment is preceded by a non-<tt>".."</tt>
0926             *   segment then both of these segments are removed.  This step is
0927             *   repeated until it is no longer applicable. </p></li>
0928             *
0929             *   <li><p> If the path is relative, and if its first segment contains a
0930             *   colon character (<tt>':'</tt>), then a <tt>"."</tt> segment is
0931             *   prepended.  This prevents a relative URI with a path such as
0932             *   <tt>"a:b/c/d"</tt> from later being re-parsed as an opaque URI with a
0933             *   scheme of <tt>"a"</tt> and a scheme-specific part of <tt>"b/c/d"</tt>.
0934             *   <b><i>(Deviation from RFC&nbsp;2396)</i></b> </p></li>
0935             *
0936             * </ol>
0937             *
0938             * <p> A normalized path will begin with one or more <tt>".."</tt> segments
0939             * if there were insufficient non-<tt>".."</tt> segments preceding them to
0940             * allow their removal.  A normalized path will begin with a <tt>"."</tt>
0941             * segment if one was inserted by step 3 above.  Otherwise, a normalized
0942             * path will not contain any <tt>"."</tt> or <tt>".."</tt> segments. </p>
0943             *
0944             * @return  A URI equivalent to this URI,
0945             *          but whose path is in normal form
0946             */
0947            public URI normalize() {
0948                return normalize(this );
0949            }
0950
0951            /**
0952             * Resolves the given URI against this URI.
0953             *
0954             * <p> If the given URI is already absolute, or if this URI is opaque, then
0955             * the given URI is returned.
0956             *
0957             * <p><a name="resolve-frag"></a> If the given URI's fragment component is
0958             * defined, its path component is empty, and its scheme, authority, and
0959             * query components are undefined, then a URI with the given fragment but
0960             * with all other components equal to those of this URI is returned.  This
0961             * allows a URI representing a standalone fragment reference, such as
0962             * <tt>"#foo"</tt>, to be usefully resolved against a base URI.
0963             *
0964             * <p> Otherwise this method constructs a new hierarchical URI in a manner
0965             * consistent with <a
0966             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
0967             * section&nbsp;5.2; that is: </p>
0968             *
0969             * <ol>
0970             *
0971             *   <li><p> A new URI is constructed with this URI's scheme and the given
0972             *   URI's query and fragment components. </p></li>
0973             *
0974             *   <li><p> If the given URI has an authority component then the new URI's
0975             *   authority and path are taken from the given URI. </p></li>
0976             *
0977             *   <li><p> Otherwise the new URI's authority component is copied from
0978             *   this URI, and its path is computed as follows: </p></li>
0979             *
0980             *   <ol type=a>
0981             *
0982             *     <li><p> If the given URI's path is absolute then the new URI's path
0983             *     is taken from the given URI. </p></li>
0984             *
0985             *     <li><p> Otherwise the given URI's path is relative, and so the new
0986             *     URI's path is computed by resolving the path of the given URI
0987             *     against the path of this URI.  This is done by concatenating all but
0988             *     the last segment of this URI's path, if any, with the given URI's
0989             *     path and then normalizing the result as if by invoking the {@link
0990             *     #normalize() normalize} method. </p></li>
0991             *
0992             *   </ol>
0993             *
0994             * </ol>
0995             *
0996             * <p> The result of this method is absolute if, and only if, either this
0997             * URI is absolute or the given URI is absolute.  </p>
0998             *
0999             * @param  uri  The URI to be resolved against this URI
1000             * @return The resulting URI
1001             *
1002             * @throws  NullPointerException
1003             *          If <tt>uri</tt> is <tt>null</tt>
1004             */
1005            public URI resolve(URI uri) {
1006                return resolve(this , uri);
1007            }
1008
1009            /**
1010             * Constructs a new URI by parsing the given string and then resolving it
1011             * against this URI.
1012             *
1013             * <p> This convenience method works as if invoking it were equivalent to
1014             * evaluating the expression <tt>{@link #resolve(java.net.URI)
1015             * resolve}(URI.{@link #create(String) create}(str))</tt>. </p>
1016             *
1017             * @param  str   The string to be parsed into a URI
1018             * @return The resulting URI
1019             *
1020             * @throws  NullPointerException
1021             *          If <tt>str</tt> is <tt>null</tt>
1022             *
1023             * @throws  IllegalArgumentException
1024             *          If the given string violates RFC&nbsp;2396
1025             */
1026            public URI resolve(String str) {
1027                return resolve(URI.create(str));
1028            }
1029
1030            /**
1031             * Relativizes the given URI against this URI.
1032             *
1033             * <p> The relativization of the given URI against this URI is computed as
1034             * follows: </p>
1035             *
1036             * <ol>
1037             *
1038             *   <li><p> If either this URI or the given URI are opaque, or if the
1039             *   scheme and authority components of the two URIs are not identical, or
1040             *   if the path of this URI is not a prefix of the path of the given URI,
1041             *   then the given URI is returned. </p></li>
1042             *
1043             *   <li><p> Otherwise a new relative hierarchical URI is constructed with
1044             *   query and fragment components taken from the given URI and with a path
1045             *   component computed by removing this URI's path from the beginning of
1046             *   the given URI's path. </p></li>
1047             *
1048             * </ol>
1049             *
1050             * @param  uri  The URI to be relativized against this URI
1051             * @return The resulting URI
1052             *
1053             * @throws  NullPointerException
1054             *          If <tt>uri</tt> is <tt>null</tt>
1055             */
1056            public URI relativize(URI uri) {
1057                return relativize(this , uri);
1058            }
1059
1060            /**
1061             * Constructs a URL from this URI.
1062             *
1063             * <p> This convenience method works as if invoking it were equivalent to
1064             * evaluating the expression <tt>new&nbsp;URL(this.toString())</tt> after
1065             * first checking that this URI is absolute. </p>
1066             *
1067             * @return  A URL constructed from this URI
1068             *
1069             * @throws  IllegalArgumentException
1070             *          If this URL is not absolute
1071             *
1072             * @throws  MalformedURLException
1073             *          If a protocol handler for the URL could not be found,
1074             *          or if some other error occurred while constructing the URL
1075             */
1076            public URL toURL() throws MalformedURLException {
1077                if (!isAbsolute())
1078                    throw new IllegalArgumentException("URI is not absolute");
1079                return new URL(toString());
1080            }
1081
1082            // -- Component access methods --
1083
1084            /**
1085             * Returns the scheme component of this URI.
1086             *
1087             * <p> The scheme component of a URI, if defined, only contains characters
1088             * in the <i>alphanum</i> category and in the string <tt>"-.+"</tt>.  A
1089             * scheme always starts with an <i>alpha</i> character. <p>
1090             *
1091             * The scheme component of a URI cannot contain escaped octets, hence this
1092             * method does not perform any decoding.
1093             *
1094             * @return  The scheme component of this URI,
1095             *          or <tt>null</tt> if the scheme is undefined
1096             */
1097            public String getScheme() {
1098                return scheme;
1099            }
1100
1101            /**
1102             * Tells whether or not this URI is absolute.
1103             *
1104             * <p> A URI is absolute if, and only if, it has a scheme component. </p>
1105             *
1106             * @return  <tt>true</tt> if, and only if, this URI is absolute
1107             */
1108            public boolean isAbsolute() {
1109                return scheme != null;
1110            }
1111
1112            /**
1113             * Tells whether or not this URI is opaque.
1114             *
1115             * <p> A URI is opaque if, and only if, it is absolute and its
1116             * scheme-specific part does not begin with a slash character ('/').
1117             * An opaque URI has a scheme, a scheme-specific part, and possibly
1118             * a fragment; all other components are undefined. </p>
1119             *
1120             * @return  <tt>true</tt> if, and only if, this URI is opaque
1121             */
1122            public boolean isOpaque() {
1123                return path == null;
1124            }
1125
1126            /**
1127             * Returns the raw scheme-specific part of this URI.  The scheme-specific
1128             * part is never undefined, though it may be empty.
1129             *
1130             * <p> The scheme-specific part of a URI only contains legal URI
1131             * characters. </p>
1132             *
1133             * @return  The raw scheme-specific part of this URI
1134             *          (never <tt>null</tt>)
1135             */
1136            public String getRawSchemeSpecificPart() {
1137                defineSchemeSpecificPart();
1138                return schemeSpecificPart;
1139            }
1140
1141            /**
1142             * Returns the decoded scheme-specific part of this URI.
1143             *
1144             * <p> The string returned by this method is equal to that returned by the
1145             * {@link #getRawSchemeSpecificPart() getRawSchemeSpecificPart} method
1146             * except that all sequences of escaped octets are <a
1147             * href="#decode">decoded</a>.  </p>
1148             *
1149             * @return  The decoded scheme-specific part of this URI
1150             *          (never <tt>null</tt>)
1151             */
1152            public String getSchemeSpecificPart() {
1153                if (decodedSchemeSpecificPart == null)
1154                    decodedSchemeSpecificPart = decode(getRawSchemeSpecificPart());
1155                return decodedSchemeSpecificPart;
1156            }
1157
1158            /**
1159             * Returns the raw authority component of this URI.
1160             *
1161             * <p> The authority component of a URI, if defined, only contains the
1162             * commercial-at character (<tt>'@'</tt>) and characters in the
1163             * <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and <i>other</i>
1164             * categories.  If the authority is server-based then it is further
1165             * constrained to have valid user-information, host, and port
1166             * components. </p>
1167             *
1168             * @return  The raw authority component of this URI,
1169             *          or <tt>null</tt> if the authority is undefined
1170             */
1171            public String getRawAuthority() {
1172                return authority;
1173            }
1174
1175            /**
1176             * Returns the decoded authority component of this URI.
1177             *
1178             * <p> The string returned by this method is equal to that returned by the
1179             * {@link #getRawAuthority() getRawAuthority} method except that all
1180             * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1181             *
1182             * @return  The decoded authority component of this URI,
1183             *          or <tt>null</tt> if the authority is undefined
1184             */
1185            public String getAuthority() {
1186                if (decodedAuthority == null)
1187                    decodedAuthority = decode(authority);
1188                return decodedAuthority;
1189            }
1190
1191            /**
1192             * Returns the raw user-information component of this URI.
1193             *
1194             * <p> The user-information component of a URI, if defined, only contains
1195             * characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and
1196             * <i>other</i> categories. </p>
1197             *
1198             * @return  The raw user-information component of this URI,
1199             *          or <tt>null</tt> if the user information is undefined
1200             */
1201            public String getRawUserInfo() {
1202                return userInfo;
1203            }
1204
1205            /**
1206             * Returns the decoded user-information component of this URI.
1207             *
1208             * <p> The string returned by this method is equal to that returned by the
1209             * {@link #getRawUserInfo() getRawUserInfo} method except that all
1210             * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1211             *
1212             * @return  The decoded user-information component of this URI,
1213             *          or <tt>null</tt> if the user information is undefined
1214             */
1215            public String getUserInfo() {
1216                if ((decodedUserInfo == null) && (userInfo != null))
1217                    decodedUserInfo = decode(userInfo);
1218                return decodedUserInfo;
1219            }
1220
1221            /**
1222             * Returns the host component of this URI.
1223             *
1224             * <p> The host component of a URI, if defined, will have one of the
1225             * following forms: </p>
1226             *
1227             * <ul type=disc>
1228             *
1229             *   <li><p> A domain name consisting of one or more <i>labels</i>
1230             *   separated by period characters (<tt>'.'</tt>), optionally followed by
1231             *   a period character.  Each label consists of <i>alphanum</i> characters
1232             *   as well as hyphen characters (<tt>'-'</tt>), though hyphens never
1233             *   occur as the first or last characters in a label. The rightmost
1234             *   label of a domain name consisting of two or more labels, begins
1235             *   with an <i>alpha</i> character. </li>
1236             *
1237             *   <li><p> A dotted-quad IPv4 address of the form
1238             *   <i>digit</i><tt>+.</tt><i>digit</i><tt>+.</tt><i>digit</i><tt>+.</tt><i>digit</i><tt>+</tt>,
1239             *   where no <i>digit</i> sequence is longer than three characters and no
1240             *   sequence has a value larger than 255. </p></li>
1241             *
1242             *   <li><p> An IPv6 address enclosed in square brackets (<tt>'['</tt> and
1243             *   <tt>']'</tt>) and consisting of hexadecimal digits, colon characters
1244             *   (<tt>':'</tt>), and possibly an embedded IPv4 address.  The full
1245             *   syntax of IPv6 addresses is specified in <a
1246             *   href="http://www.ietf.org/rfc/rfc2373.txt"><i>RFC&nbsp;2373: IPv6
1247             *   Addressing Architecture</i></a>.  </p></li>
1248             *
1249             * </ul>
1250             *
1251             * The host component of a URI cannot contain escaped octets, hence this
1252             * method does not perform any decoding.
1253             *
1254             * @return  The host component of this URI,
1255             *          or <tt>null</tt> if the host is undefined
1256             */
1257            public String getHost() {
1258                return host;
1259            }
1260
1261            /**
1262             * Returns the port number of this URI.
1263             *
1264             * <p> The port component of a URI, if defined, is a non-negative
1265             * integer. </p>
1266             *
1267             * @return  The port component of this URI,
1268             *          or <tt>-1</tt> if the port is undefined
1269             */
1270            public int getPort() {
1271                return port;
1272            }
1273
1274            /**
1275             * Returns the raw path component of this URI.
1276             *
1277             * <p> The path component of a URI, if defined, only contains the slash
1278             * character (<tt>'/'</tt>), the commercial-at character (<tt>'@'</tt>),
1279             * and characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>,
1280             * and <i>other</i> categories. </p>
1281             *
1282             * @return  The path component of this URI,
1283             *          or <tt>null</tt> if the path is undefined
1284             */
1285            public String getRawPath() {
1286                return path;
1287            }
1288
1289            /**
1290             * Returns the decoded path component of this URI.
1291             *
1292             * <p> The string returned by this method is equal to that returned by the
1293             * {@link #getRawPath() getRawPath} method except that all sequences of
1294             * escaped octets are <a href="#decode">decoded</a>.  </p>
1295             *
1296             * @return  The decoded path component of this URI,
1297             *          or <tt>null</tt> if the path is undefined
1298             */
1299            public String getPath() {
1300                if ((decodedPath == null) && (path != null))
1301                    decodedPath = decode(path);
1302                return decodedPath;
1303            }
1304
1305            /**
1306             * Returns the raw query component of this URI.
1307             *
1308             * <p> The query component of a URI, if defined, only contains legal URI
1309             * characters. </p>
1310             *
1311             * @return  The raw query component of this URI,
1312             *          or <tt>null</tt> if the query is undefined
1313             */
1314            public String getRawQuery() {
1315                return query;
1316            }
1317
1318            /**
1319             * Returns the decoded query component of this URI.
1320             *
1321             * <p> The string returned by this method is equal to that returned by the
1322             * {@link #getRawQuery() getRawQuery} method except that all sequences of
1323             * escaped octets are <a href="#decode">decoded</a>.  </p>
1324             *
1325             * @return  The decoded query component of this URI,
1326             *          or <tt>null</tt> if the query is undefined
1327             */
1328            public String getQuery() {
1329                if ((decodedQuery == null) && (query != null))
1330                    decodedQuery = decode(query);
1331                return decodedQuery;
1332            }
1333
1334            /**
1335             * Returns the raw fragment component of this URI.
1336             *
1337             * <p> The fragment component of a URI, if defined, only contains legal URI
1338             * characters. </p>
1339             *
1340             * @return  The raw fragment component of this URI,
1341             *          or <tt>null</tt> if the fragment is undefined
1342             */
1343            public String getRawFragment() {
1344                return fragment;
1345            }
1346
1347            /**
1348             * Returns the decoded fragment component of this URI.
1349             *
1350             * <p> The string returned by this method is equal to that returned by the
1351             * {@link #getRawFragment() getRawFragment} method except that all
1352             * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1353             *
1354             * @return  The decoded fragment component of this URI,
1355             *          or <tt>null</tt> if the fragment is undefined
1356             */
1357            public String getFragment() {
1358                if ((decodedFragment == null) && (fragment != null))
1359                    decodedFragment = decode(fragment);
1360                return decodedFragment;
1361            }
1362
1363            // -- Equality, comparison, hash code, toString, and serialization --
1364
1365            /**
1366             * Tests this URI for equality with another object.
1367             *
1368             * <p> If the given object is not a URI then this method immediately
1369             * returns <tt>false</tt>.
1370             *
1371             * <p> For two URIs to be considered equal requires that either both are
1372             * opaque or both are hierarchical.  Their schemes must either both be
1373             * undefined or else be equal without regard to case. Their fragments
1374             * must either both be undefined or else be equal.
1375             *
1376             * <p> For two opaque URIs to be considered equal, their scheme-specific
1377             * parts must be equal.
1378             *
1379             * <p> For two hierarchical URIs to be considered equal, their paths must
1380             * be equal and their queries must either both be undefined or else be
1381             * equal.  Their authorities must either both be undefined, or both be
1382             * registry-based, or both be server-based.  If their authorities are
1383             * defined and are registry-based, then they must be equal.  If their
1384             * authorities are defined and are server-based, then their hosts must be
1385             * equal without regard to case, their port numbers must be equal, and
1386             * their user-information components must be equal.
1387             *
1388             * <p> When testing the user-information, path, query, fragment, authority,
1389             * or scheme-specific parts of two URIs for equality, the raw forms rather
1390             * than the encoded forms of these components are compared and the
1391             * hexadecimal digits of escaped octets are compared without regard to
1392             * case.
1393             *
1394             * <p> This method satisfies the general contract of the {@link
1395             * java.lang.Object#equals(Object) Object.equals} method. </p>
1396             *
1397             * @param   ob   The object to which this object is to be compared
1398             *
1399             * @return  <tt>true</tt> if, and only if, the given object is a URI that
1400             *          is identical to this URI
1401             */
1402            public boolean equals(Object ob) {
1403                if (ob == this )
1404                    return true;
1405                if (!(ob instanceof  URI))
1406                    return false;
1407                URI that = (URI) ob;
1408                if (this .isOpaque() != that.isOpaque())
1409                    return false;
1410                if (!equalIgnoringCase(this .scheme, that.scheme))
1411                    return false;
1412                if (!equal(this .fragment, that.fragment))
1413                    return false;
1414
1415                // Opaque
1416                if (this .isOpaque())
1417                    return equal(this .schemeSpecificPart,
1418                            that.schemeSpecificPart);
1419
1420                // Hierarchical
1421                if (!equal(this .path, that.path))
1422                    return false;
1423                if (!equal(this .query, that.query))
1424                    return false;
1425
1426                // Authorities
1427                if (this .authority == that.authority)
1428                    return true;
1429                if (this .host != null) {
1430                    // Server-based
1431                    if (!equal(this .userInfo, that.userInfo))
1432                        return false;
1433                    if (!equalIgnoringCase(this .host, that.host))
1434                        return false;
1435                    if (this .port != that.port)
1436                        return false;
1437                } else if (this .authority != null) {
1438                    // Registry-based
1439                    if (!equal(this .authority, that.authority))
1440                        return false;
1441                } else if (this .authority != that.authority) {
1442                    return false;
1443                }
1444
1445                return true;
1446            }
1447
1448            /**
1449             * Returns a hash-code value for this URI.  The hash code is based upon all
1450             * of the URI's components, and satisfies the general contract of the
1451             * {@link java.lang.Object#hashCode() Object.hashCode} method.
1452             *
1453             * @return  A hash-code value for this URI
1454             */
1455            public int hashCode() {
1456                if (hash != 0)
1457                    return hash;
1458                int h = hashIgnoringCase(0, scheme);
1459                h = hash(h, fragment);
1460                if (isOpaque()) {
1461                    h = hash(h, schemeSpecificPart);
1462                } else {
1463                    h = hash(h, path);
1464                    h = hash(h, query);
1465                    if (host != null) {
1466                        h = hash(h, userInfo);
1467                        h = hashIgnoringCase(h, host);
1468                        h += 1949 * port;
1469                    } else {
1470                        h = hash(h, authority);
1471                    }
1472                }
1473                hash = h;
1474                return h;
1475            }
1476
1477            /**
1478             * Compares this URI to another object, which must be a URI.
1479             *
1480             * <p> When comparing corresponding components of two URIs, if one
1481             * component is undefined but the other is defined then the first is
1482             * considered to be less than the second.  Unless otherwise noted, string
1483             * components are ordered according to their natural, case-sensitive
1484             * ordering as defined by the {@link java.lang.String#compareTo(Object)
1485             * String.compareTo} method.  String components that are subject to
1486             * encoding are compared by comparing their raw forms rather than their
1487             * encoded forms.
1488             *
1489             * <p> The ordering of URIs is defined as follows: </p>
1490             *
1491             * <ul type=disc>
1492             *
1493             *   <li><p> Two URIs with different schemes are ordered according the
1494             *   ordering of their schemes, without regard to case. </p></li>
1495             *
1496             *   <li><p> A hierarchical URI is considered to be less than an opaque URI
1497             *   with an identical scheme. </p></li>
1498             *
1499             *   <li><p> Two opaque URIs with identical schemes are ordered according
1500             *   to the ordering of their scheme-specific parts. </p></li>
1501             *
1502             *   <li><p> Two opaque URIs with identical schemes and scheme-specific
1503             *   parts are ordered according to the ordering of their
1504             *   fragments. </p></li>
1505             *
1506             *   <li><p> Two hierarchical URIs with identical schemes are ordered
1507             *   according to the ordering of their authority components: </p></li>
1508             *
1509             *   <ul type=disc>
1510             *
1511             *     <li><p> If both authority components are server-based then the URIs
1512             *     are ordered according to their user-information components; if these
1513             *     components are identical then the URIs are ordered according to the
1514             *     ordering of their hosts, without regard to case; if the hosts are
1515             *     identical then the URIs are ordered according to the ordering of
1516             *     their ports. </p></li>
1517             *
1518             *     <li><p> If one or both authority components are registry-based then
1519             *     the URIs are ordered according to the ordering of their authority
1520             *     components. </p></li>
1521             *
1522             *   </ul>
1523             *
1524             *   <li><p> Finally, two hierarchical URIs with identical schemes and
1525             *   authority components are ordered according to the ordering of their
1526             *   paths; if their paths are identical then they are ordered according to
1527             *   the ordering of their queries; if the queries are identical then they
1528             *   are ordered according to the order of their fragments. </p></li>
1529             *
1530             * </ul>
1531             *
1532             * <p> This method satisfies the general contract of the {@link
1533             * java.lang.Comparable#compareTo(Object) Comparable.compareTo}
1534             * method. </p>
1535             *
1536             * @param   that
1537             *          The object to which this URI is to be compared
1538             *
1539             * @return  A negative integer, zero, or a positive integer as this URI is
1540             *          less than, equal to, or greater than the given URI
1541             *
1542             * @throws  ClassCastException
1543             *          If the given object is not a URI
1544             */
1545            public int compareTo(URI that) {
1546                int c;
1547
1548                if ((c = compareIgnoringCase(this .scheme, that.scheme)) != 0)
1549                    return c;
1550
1551                if (this .isOpaque()) {
1552                    if (that.isOpaque()) {
1553                        // Both opaque
1554                        if ((c = compare(this .schemeSpecificPart,
1555                                that.schemeSpecificPart)) != 0)
1556                            return c;
1557                        return compare(this .fragment, that.fragment);
1558                    }
1559                    return +1; // Opaque > hierarchical
1560                } else if (that.isOpaque()) {
1561                    return -1; // Hierarchical < opaque
1562                }
1563
1564                // Hierarchical
1565                if ((this .host != null) && (that.host != null)) {
1566                    // Both server-based
1567                    if ((c = compare(this .userInfo, that.userInfo)) != 0)
1568                        return c;
1569                    if ((c = compareIgnoringCase(this .host, that.host)) != 0)
1570                        return c;
1571                    if ((c = this .port - that.port) != 0)
1572                        return c;
1573                } else {
1574                    // If one or both authorities are registry-based then we simply
1575                    // compare them in the usual, case-sensitive way.  If one is
1576                    // registry-based and one is server-based then the strings are
1577                    // guaranteed to be unequal, hence the comparison will never return
1578                    // zero and the compareTo and equals methods will remain
1579                    // consistent.
1580                    if ((c = compare(this .authority, that.authority)) != 0)
1581                        return c;
1582                }
1583
1584                if ((c = compare(this .path, that.path)) != 0)
1585                    return c;
1586                if ((c = compare(this .query, that.query)) != 0)
1587                    return c;
1588                return compare(this .fragment, that.fragment);
1589            }
1590
1591            /**
1592             * Returns the content of this URI as a string.
1593             *
1594             * <p> If this URI was created by invoking one of the constructors in this
1595             * class then a string equivalent to the original input string, or to the
1596             * string computed from the originally-given components, as appropriate, is
1597             * returned.  Otherwise this URI was created by normalization, resolution,
1598             * or relativization, and so a string is constructed from this URI's
1599             * components according to the rules specified in <a
1600             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
1601             * section&nbsp;5.2, step&nbsp;7. </p>
1602             *
1603             * @return  The string form of this URI
1604             */
1605            public String toString() {
1606                defineString();
1607                return string;
1608            }
1609
1610            /**
1611             * Returns the content of this URI as a US-ASCII string.
1612             *
1613             * <p> If this URI does not contain any characters in the <i>other</i>
1614             * category then an invocation of this method will return the same value as
1615             * an invocation of the {@link #toString() toString} method.  Otherwise
1616             * this method works as if by invoking that method and then <a
1617             * href="#encode">encoding</a> the result.  </p>
1618             *
1619             * @return  The string form of this URI, encoded as needed
1620             *          so that it only contains characters in the US-ASCII
1621             *          charset
1622             */
1623            public String toASCIIString() {
1624                defineString();
1625                return encode(string);
1626            }
1627
1628            // -- Serialization support --
1629
1630            /**
1631             * Saves the content of this URI to the given serial stream.
1632             *
1633             * <p> The only serializable field of a URI instance is its <tt>string</tt>
1634             * field.  That field is given a value, if it does not have one already,
1635             * and then the {@link java.io.ObjectOutputStream#defaultWriteObject()}
1636             * method of the given object-output stream is invoked. </p>
1637             *
1638             * @param  os  The object-output stream to which this object
1639             *             is to be written
1640             */
1641            private void writeObject(ObjectOutputStream os) throws IOException {
1642                defineString();
1643                os.defaultWriteObject(); // Writes the string field only
1644            }
1645
1646            /**
1647             * Reconstitutes a URI from the given serial stream.
1648             *
1649             * <p> The {@link java.io.ObjectInputStream#defaultReadObject()} method is
1650             * invoked to read the value of the <tt>string</tt> field.  The result is
1651             * then parsed in the usual way.
1652             *
1653             * @param  is  The object-input stream from which this object
1654             *             is being read
1655             */
1656            private void readObject(ObjectInputStream is)
1657                    throws ClassNotFoundException, IOException {
1658                port = -1; // Argh
1659                is.defaultReadObject();
1660                try {
1661                    new Parser(string).parse(false);
1662                } catch (URISyntaxException x) {
1663                    IOException y = new InvalidObjectException("Invalid URI");
1664                    y.initCause(x);
1665                    throw y;
1666                }
1667            }
1668
1669            // -- End of public methods --
1670
1671            // -- Utility methods for string-field comparison and hashing --
1672
1673            // These methods return appropriate values for null string arguments,
1674            // thereby simplifying the equals, hashCode, and compareTo methods.
1675            //
1676            // The case-ignoring methods should only be applied to strings whose
1677            // characters are all known to be US-ASCII.  Because of this restriction,
1678            // these methods are faster than the similar methods in the String class.
1679
1680            // US-ASCII only
1681            private static int toLower(char c) {
1682                if ((c >= 'A') && (c <= 'Z'))
1683                    return c + ('a' - 'A');
1684                return c;
1685            }
1686
1687            private static boolean equal(String s, String t) {
1688                if (s == t)
1689                    return true;
1690                if ((s != null) && (t != null)) {
1691                    if (s.length() != t.length())
1692                        return false;
1693                    if (s.indexOf('%') < 0)
1694                        return s.equals(t);
1695                    int n = s.length();
1696                    for (int i = 0; i < n;) {
1697                        char c = s.charAt(i);
1698                        char d = t.charAt(i);
1699                        if (c != '%') {
1700                            if (c != d)
1701                                return false;
1702                            i++;
1703                            continue;
1704                        }
1705                        i++;
1706                        if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1707                            return false;
1708                        i++;
1709                        if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1710                            return false;
1711                        i++;
1712                    }
1713                    return true;
1714                }
1715                return false;
1716            }
1717
1718            // US-ASCII only
1719            private static boolean equalIgnoringCase(String s, String t) {
1720                if (s == t)
1721                    return true;
1722                if ((s != null) && (t != null)) {
1723                    int n = s.length();
1724                    if (t.length() != n)
1725                        return false;
1726                    for (int i = 0; i < n; i++) {
1727                        if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1728                            return false;
1729                    }
1730                    return true;
1731                }
1732                return false;
1733            }
1734
1735            private static int hash(int hash, String s) {
1736                if (s == null)
1737                    return hash;
1738                return hash * 127 + s.hashCode();
1739            }
1740
1741            // US-ASCII only
1742            private static int hashIgnoringCase(int hash, String s) {
1743                if (s == null)
1744                    return hash;
1745                int h = hash;
1746                int n = s.length();
1747                for (int i = 0; i < n; i++)
1748                    h = 31 * h + toLower(s.charAt(i));
1749                return h;
1750            }
1751
1752            private static int compare(String s, String t) {
1753                if (s == t)
1754                    return 0;
1755                if (s != null) {
1756                    if (t != null)
1757                        return s.compareTo(t);
1758                    else
1759                        return +1;
1760                } else {
1761                    return -1;
1762                }
1763            }
1764
1765            // US-ASCII only
1766            private static int compareIgnoringCase(String s, String t) {
1767                if (s == t)
1768                    return 0;
1769                if (s != null) {
1770                    if (t != null) {
1771                        int sn = s.length();
1772                        int tn = t.length();
1773                        int n = sn < tn ? sn : tn;
1774                        for (int i = 0; i < n; i++) {
1775                            int c = toLower(s.charAt(i)) - toLower(t.charAt(i));
1776                            if (c != 0)
1777                                return c;
1778                        }
1779                        return sn - tn;
1780                    }
1781                    return +1;
1782                } else {
1783                    return -1;
1784                }
1785            }
1786
1787            // -- String construction --
1788
1789            // If a scheme is given then the path, if given, must be absolute
1790            //
1791            private static void checkPath(String s, String scheme, String path)
1792                    throws URISyntaxException {
1793                if (scheme != null) {
1794                    if ((path != null)
1795                            && ((path.length() > 0) && (path.charAt(0) != '/')))
1796                        throw new URISyntaxException(s,
1797                                "Relative path in absolute URI");
1798                }
1799            }
1800
1801            private void appendAuthority(StringBuffer sb, String authority,
1802                    String userInfo, String host, int port) {
1803                if (host != null) {
1804                    sb.append("//");
1805                    if (userInfo != null) {
1806                        sb.append(quote(userInfo, L_USERINFO, H_USERINFO));
1807                        sb.append('@');
1808                    }
1809                    boolean needBrackets = ((host.indexOf(':') >= 0)
1810                            && !host.startsWith("[") && !host.endsWith("]"));
1811                    if (needBrackets)
1812                        sb.append('[');
1813                    sb.append(host);
1814                    if (needBrackets)
1815                        sb.append(']');
1816                    if (port != -1) {
1817                        sb.append(':');
1818                        sb.append(port);
1819                    }
1820                } else if (authority != null) {
1821                    sb.append("//");
1822                    if (authority.startsWith("[")) {
1823                        int end = authority.indexOf("]");
1824                        if (end != -1 && authority.indexOf(":") != -1) {
1825                            String doquote, dontquote;
1826                            if (end == authority.length()) {
1827                                dontquote = authority;
1828                                doquote = "";
1829                            } else {
1830                                dontquote = authority.substring(0, end + 1);
1831                                doquote = authority.substring(end + 1);
1832                            }
1833                            sb.append(dontquote);
1834                            sb.append(quote(doquote, L_REG_NAME | L_SERVER,
1835                                    H_REG_NAME | H_SERVER));
1836                        }
1837                    } else {
1838                        sb.append(quote(authority, L_REG_NAME | L_SERVER,
1839                                H_REG_NAME | H_SERVER));
1840                    }
1841                }
1842            }
1843
1844            private void appendSchemeSpecificPart(StringBuffer sb,
1845                    String opaquePart, String authority, String userInfo,
1846                    String host, int port, String path, String query) {
1847                if (opaquePart != null) {
1848                    /* check if SSP begins with an IPv6 address
1849                     * because we must not quote a literal IPv6 address
1850                     */
1851                    if (opaquePart.startsWith("//[")) {
1852                        int end = opaquePart.indexOf("]");
1853                        if (end != -1 && opaquePart.indexOf(":") != -1) {
1854                            String doquote, dontquote;
1855                            if (end == opaquePart.length()) {
1856                                dontquote = opaquePart;
1857                                doquote = "";
1858                            } else {
1859                                dontquote = opaquePart.substring(0, end + 1);
1860                                doquote = opaquePart.substring(end + 1);
1861                            }
1862                            sb.append(dontquote);
1863                            sb.append(quote(doquote, L_URIC, H_URIC));
1864                        }
1865                    } else {
1866                        sb.append(quote(opaquePart, L_URIC, H_URIC));
1867                    }
1868                } else {
1869                    appendAuthority(sb, authority, userInfo, host, port);
1870                    if (path != null)
1871                        sb.append(quote(path, L_PATH, H_PATH));
1872                    if (query != null) {
1873                        sb.append('?');
1874                        sb.append(quote(query, L_URIC, H_URIC));
1875                    }
1876                }
1877            }
1878
1879            private void appendFragment(StringBuffer sb, String fragment) {
1880                if (fragment != null) {
1881                    sb.append('#');
1882                    sb.append(quote(fragment, L_URIC, H_URIC));
1883                }
1884            }
1885
1886            private String toString(String scheme, String opaquePart,
1887                    String authority, String userInfo, String host, int port,
1888                    String path, String query, String fragment) {
1889                StringBuffer sb = new StringBuffer();
1890                if (scheme != null) {
1891                    sb.append(scheme);
1892                    sb.append(':');
1893                }
1894                appendSchemeSpecificPart(sb, opaquePart, authority, userInfo,
1895                        host, port, path, query);
1896                appendFragment(sb, fragment);
1897                return sb.toString();
1898            }
1899
1900            private void defineSchemeSpecificPart() {
1901                if (schemeSpecificPart != null)
1902                    return;
1903                StringBuffer sb = new StringBuffer();
1904                appendSchemeSpecificPart(sb, null, getAuthority(),
1905                        getUserInfo(), host, port, getPath(), getQuery());
1906                if (sb.length() == 0)
1907                    return;
1908                schemeSpecificPart = sb.toString();
1909            }
1910
1911            private void defineString() {
1912                if (string != null)
1913                    return;
1914
1915                StringBuffer sb = new StringBuffer();
1916                if (scheme != null) {
1917                    sb.append(scheme);
1918                    sb.append(':');
1919                }
1920                if (isOpaque()) {
1921                    sb.append(schemeSpecificPart);
1922                } else {
1923                    if (host != null) {
1924                        sb.append("//");
1925                        if (userInfo != null) {
1926                            sb.append(userInfo);
1927                            sb.append('@');
1928                        }
1929                        boolean needBrackets = ((host.indexOf(':') >= 0)
1930                                && !host.startsWith("[") && !host.endsWith("]"));
1931                        if (needBrackets)
1932                            sb.append('[');
1933                        sb.append(host);
1934                        if (needBrackets)
1935                            sb.append(']');
1936                        if (port != -1) {
1937                            sb.append(':');
1938                            sb.append(port);
1939                        }
1940                    } else if (authority != null) {
1941                        sb.append("//");
1942                        sb.append(authority);
1943                    }
1944                    if (path != null)
1945                        sb.append(path);
1946                    if (query != null) {
1947                        sb.append('?');
1948                        sb.append(query);
1949                    }
1950                }
1951                if (fragment != null) {
1952                    sb.append('#');
1953                    sb.append(fragment);
1954                }
1955                string = sb.toString();
1956            }
1957
1958            // -- Normalization, resolution, and relativization --
1959
1960            // RFC2396 5.2 (6)
1961            private static String resolvePath(String base, String child,
1962                    boolean absolute) {
1963                int i = base.lastIndexOf('/');
1964                int cn = child.length();
1965                String path = "";
1966
1967                if (cn == 0) {
1968                    // 5.2 (6a)
1969                    if (i >= 0)
1970                        path = base.substring(0, i + 1);
1971                } else {
1972                    StringBuffer sb = new StringBuffer(base.length() + cn);
1973                    // 5.2 (6a)
1974                    if (i >= 0)
1975                        sb.append(base.substring(0, i + 1));
1976                    // 5.2 (6b)
1977                    sb.append(child);
1978                    path = sb.toString();
1979                }
1980
1981                // 5.2 (6c-f)
1982                String np = normalize(path);
1983
1984                // 5.2 (6g): If the result is absolute but the path begins with "../",
1985                // then we simply leave the path as-is
1986
1987                return np;
1988            }
1989
1990            // RFC2396 5.2
1991            private static URI resolve(URI base, URI child) {
1992                // check if child if opaque first so that NPE is thrown 
1993                // if child is null.
1994                if (child.isOpaque() || base.isOpaque())
1995                    return child;
1996
1997                // 5.2 (2): Reference to current document (lone fragment)
1998                if ((child.scheme == null) && (child.authority == null)
1999                        && child.path.equals("") && (child.fragment != null)
2000                        && (child.query == null)) {
2001                    if ((base.fragment != null)
2002                            && child.fragment.equals(base.fragment)) {
2003                        return base;
2004                    }
2005                    URI ru = new URI();
2006                    ru.scheme = base.scheme;
2007                    ru.authority = base.authority;
2008                    ru.userInfo = base.userInfo;
2009                    ru.host = base.host;
2010                    ru.port = base.port;
2011                    ru.path = base.path;
2012                    ru.fragment = child.fragment;
2013                    ru.query = base.query;
2014                    return ru;
2015                }
2016
2017                // 5.2 (3): Child is absolute
2018                if (child.scheme != null)
2019                    return child;
2020
2021                URI ru = new URI(); // Resolved URI
2022                ru.scheme = base.scheme;
2023                ru.query = child.query;
2024                ru.fragment = child.fragment;
2025
2026                // 5.2 (4): Authority
2027                if (child.authority == null) {
2028                    ru.authority = base.authority;
2029                    ru.host = base.host;
2030                    ru.userInfo = base.userInfo;
2031                    ru.port = base.port;
2032
2033                    String cp = (child.path == null) ? "" : child.path;
2034                    if ((cp.length() > 0) && (cp.charAt(0) == '/')) {
2035                        // 5.2 (5): Child path is absolute
2036                        ru.path = child.path;
2037                    } else {
2038                        // 5.2 (6): Resolve relative path
2039                        ru.path = resolvePath(base.path, cp, base.isAbsolute());
2040                    }
2041                } else {
2042                    ru.authority = child.authority;
2043                    ru.host = child.host;
2044                    ru.userInfo = child.userInfo;
2045                    ru.host = child.host;
2046                    ru.port = child.port;
2047                    ru.path = child.path;
2048                }
2049
2050                // 5.2 (7): Recombine (nothing to do here)
2051                return ru;
2052            }
2053
2054            // If the given URI's path is normal then return the URI;
2055            // o.w., return a new URI containing the normalized path.
2056            //
2057            private static URI normalize(URI u) {
2058                if (u.isOpaque() || (u.path == null) || (u.path.length() == 0))
2059                    return u;
2060
2061                String np = normalize(u.path);
2062                if (np == u.path)
2063                    return u;
2064
2065                URI v = new URI();
2066                v.scheme = u.scheme;
2067                v.fragment = u.fragment;
2068                v.authority = u.authority;
2069                v.userInfo = u.userInfo;
2070                v.host = u.host;
2071                v.port = u.port;
2072                v.path = np;
2073                v.query = u.query;
2074                return v;
2075            }
2076
2077            // If both URIs are hierarchical, their scheme and authority components are
2078            // identical, and the base path is a prefix of the child's path, then
2079            // return a relative URI that, when resolved against the base, yields the
2080            // child; otherwise, return the child.
2081            //
2082            private static URI relativize(URI base, URI child) {
2083                // check if child if opaque first so that NPE is thrown 
2084                // if child is null.
2085                if (child.isOpaque() || base.isOpaque())
2086                    return child;
2087                if (!equalIgnoringCase(base.scheme, child.scheme)
2088                        || !equal(base.authority, child.authority))
2089                    return child;
2090
2091                String bp = normalize(base.path);
2092                String cp = normalize(child.path);
2093                if (!bp.equals(cp)) {
2094                    if (!bp.endsWith("/"))
2095                        bp = bp + "/";
2096                    if (!cp.startsWith(bp))
2097                        return child;
2098                }
2099
2100                URI v = new URI();
2101                v.path = cp.substring(bp.length());
2102                v.query = child.query;
2103                v.fragment = child.fragment;
2104                return v;
2105            }
2106
2107            // -- Path normalization --
2108
2109            // The following algorithm for path normalization avoids the creation of a
2110            // string object for each segment, as well as the use of a string buffer to
2111            // compute the final result, by using a single char array and editing it in
2112            // place.  The array is first split into segments, replacing each slash
2113            // with '\0' and creating a segment-index array, each element of which is
2114            // the index of the first char in the corresponding segment.  We then walk
2115            // through both arrays, removing ".", "..", and other segments as necessary
2116            // by setting their entries in the index array to -1.  Finally, the two
2117            // arrays are used to rejoin the segments and compute the final result.
2118            //
2119            // This code is based upon src/solaris/native/java/io/canonicalize_md.c
2120
2121            // Check the given path to see if it might need normalization.  A path
2122            // might need normalization if it contains duplicate slashes, a "."
2123            // segment, or a ".." segment.  Return -1 if no further normalization is
2124            // possible, otherwise return the number of segments found.
2125            //
2126            // This method takes a string argument rather than a char array so that
2127            // this test can be performed without invoking path.toCharArray().
2128            //
2129            static private int needsNormalization(String path) {
2130                boolean normal = true;
2131                int ns = 0; // Number of segments
2132                int end = path.length() - 1; // Index of last char in path
2133                int p = 0; // Index of next char in path
2134
2135                // Skip initial slashes
2136                while (p <= end) {
2137                    if (path.charAt(p) != '/')
2138                        break;
2139                    p++;
2140                }
2141                if (p > 1)
2142                    normal = false;
2143
2144                // Scan segments
2145                while (p <= end) {
2146
2147                    // Looking at "." or ".." ?
2148                    if ((path.charAt(p) == '.')
2149                            && ((p == end) || ((path.charAt(p + 1) == '/') || ((path
2150                                    .charAt(p + 1) == '.') && ((p + 1 == end) || (path
2151                                    .charAt(p + 2) == '/')))))) {
2152                        normal = false;
2153                    }
2154                    ns++;
2155
2156                    // Find beginning of next segment
2157                    while (p <= end) {
2158                        if (path.charAt(p++) != '/')
2159                            continue;
2160
2161                        // Skip redundant slashes
2162                        while (p <= end) {
2163                            if (path.charAt(p) != '/')
2164                                break;
2165                            normal = false;
2166                            p++;
2167                        }
2168
2169                        break;
2170                    }
2171                }
2172
2173                return normal ? -1 : ns;
2174            }
2175
2176            // Split the given path into segments, replacing slashes with nulls and
2177            // filling in the given segment-index array.
2178            //
2179            // Preconditions:
2180            //   segs.length == Number of segments in path
2181            //
2182            // Postconditions:
2183            //   All slashes in path replaced by '\0'
2184            //   segs[i] == Index of first char in segment i (0 <= i < segs.length)
2185            //
2186            static private void split(char[] path, int[] segs) {
2187                int end = path.length - 1; // Index of last char in path
2188                int p = 0; // Index of next char in path
2189                int i = 0; // Index of current segment
2190
2191                // Skip initial slashes
2192                while (p <= end) {
2193                    if (path[p] != '/')
2194                        break;
2195                    path[p] = '\0';
2196                    p++;
2197                }
2198
2199                while (p <= end) {
2200
2201                    // Note start of segment
2202                    segs[i++] = p++;
2203
2204                    // Find beginning of next segment
2205                    while (p <= end) {
2206                        if (path[p++] != '/')
2207                            continue;
2208                        path[p - 1] = '\0';
2209
2210                        // Skip redundant slashes
2211                        while (p <= end) {
2212                            if (path[p] != '/')
2213                                break;
2214                            path[p++] = '\0';
2215                        }
2216                        break;
2217                    }
2218                }
2219
2220                if (i != segs.length)
2221                    throw new InternalError(); // ASSERT
2222            }
2223
2224            // Join the segments in the given path according to the given segment-index
2225            // array, ignoring those segments whose index entries have been set to -1,
2226            // and inserting slashes as needed.  Return the length of the resulting
2227            // path.
2228            //
2229            // Preconditions:
2230            //   segs[i] == -1 implies segment i is to be ignored
2231            //   path computed by split, as above, with '\0' having replaced '/'
2232            //
2233            // Postconditions:
2234            //   path[0] .. path[return value] == Resulting path
2235            //
2236            static private int join(char[] path, int[] segs) {
2237                int ns = segs.length; // Number of segments
2238                int end = path.length - 1; // Index of last char in path
2239                int p = 0; // Index of next path char to write
2240
2241                if (path[p] == '\0') {
2242                    // Restore initial slash for absolute paths
2243                    path[p++] = '/';
2244                }
2245
2246                for (int i = 0; i < ns; i++) {
2247                    int q = segs[i]; // Current segment
2248                    if (q == -1)
2249                        // Ignore this segment
2250                        continue;
2251
2252                    if (p == q) {
2253                        // We're already at this segment, so just skip to its end
2254                        while ((p <= end) && (path[p] != '\0'))
2255                            p++;
2256                        if (p <= end) {
2257                            // Preserve trailing slash
2258                            path[p++] = '/';
2259                        }
2260                    } else if (p < q) {
2261                        // Copy q down to p
2262                        while ((q <= end) && (path[q] != '\0'))
2263                            path[p++] = path[q++];
2264                        if (q <= end) {
2265                            // Preserve trailing slash
2266                            path[p++] = '/';
2267                        }
2268                    } else
2269                        throw new InternalError(); // ASSERT false
2270                }
2271
2272                return p;
2273            }
2274
2275            // Remove "." segments from the given path, and remove segment pairs
2276            // consisting of a non-".." segment followed by a ".." segment.
2277            //
2278            private static void removeDots(char[] path, int[] segs) {
2279                int ns = segs.length;
2280                int end = path.length - 1;
2281
2282                for (int i = 0; i < ns; i++) {
2283                    int dots = 0; // Number of dots found (0, 1, or 2)
2284
2285                    // Find next occurrence of "." or ".."
2286                    do {
2287                        int p = segs[i];
2288                        if (path[p] == '.') {
2289                            if (p == end) {
2290                                dots = 1;
2291                                break;
2292                            } else if (path[p + 1] == '\0') {
2293                                dots = 1;
2294                                break;
2295                            } else if ((path[p + 1] == '.')
2296                                    && ((p + 1 == end) || (path[p + 2] == '\0'))) {
2297                                dots = 2;
2298                                break;
2299                            }
2300                        }
2301                        i++;
2302                    } while (i < ns);
2303                    if ((i > ns) || (dots == 0))
2304                        break;
2305
2306                    if (dots == 1) {
2307                        // Remove this occurrence of "."
2308                        segs[i] = -1;
2309                    } else {
2310                        // If there is a preceding non-".." segment, remove both that
2311                        // segment and this occurrence of ".."; otherwise, leave this
2312                        // ".." segment as-is.
2313                        int j;
2314                        for (j = i - 1; j >= 0; j--) {
2315                            if (segs[j] != -1)
2316                                break;
2317                        }
2318                        if (j >= 0) {
2319                            int q = segs[j];
2320                            if (!((path[q] == '.') && (path[q + 1] == '.') && (path[q + 2] == '\0'))) {
2321                                segs[i] = -1;
2322                                segs[j] = -1;
2323                            }
2324                        }
2325                    }
2326                }
2327            }
2328
2329            // DEVIATION: If the normalized path is relative, and if the first
2330            // segment could be parsed as a scheme name, then prepend a "." segment
2331            //
2332            private static void maybeAddLeadingDot(char[] path, int[] segs) {
2333
2334                if (path[0] == '\0')
2335                    // The path is absolute
2336                    return;
2337
2338                int ns = segs.length;
2339                int f = 0; // Index of first segment
2340                while (f < ns) {
2341                    if (segs[f] >= 0)
2342                        break;
2343                    f++;
2344                }
2345                if ((f >= ns) || (f == 0))
2346                    // The path is empty, or else the original first segment survived,
2347                    // in which case we already know that no leading "." is needed
2348                    return;
2349
2350                int p = segs[f];
2351                while ((p < path.length) && (path[p] != ':')
2352                        && (path[p] != '\0'))
2353                    p++;
2354                if (p >= path.length || path[p] == '\0')
2355                    // No colon in first segment, so no "." needed
2356                    return;
2357
2358                // At this point we know that the first segment is unused,
2359                // hence we can insert a "." segment at that position
2360                path[0] = '.';
2361                path[1] = '\0';
2362                segs[0] = 0;
2363            }
2364
2365            // Normalize the given path string.  A normal path string has no empty
2366            // segments (i.e., occurrences of "//"), no segments equal to ".", and no
2367            // segments equal to ".." that are preceded by a segment not equal to "..".
2368            // In contrast to Unix-style pathname normalization, for URI paths we
2369            // always retain trailing slashes.
2370            //
2371            private static String normalize(String ps) {
2372
2373                // Does this path need normalization?
2374                int ns = needsNormalization(ps); // Number of segments
2375                if (ns < 0)
2376                    // Nope -- just return it
2377                    return ps;
2378
2379                char[] path = ps.toCharArray(); // Path in char-array form
2380
2381                // Split path into segments
2382                int[] segs = new int[ns]; // Segment-index array
2383                split(path, segs);
2384
2385                // Remove dots
2386                removeDots(path, segs);
2387
2388                // Prevent scheme-name confusion
2389                maybeAddLeadingDot(path, segs);
2390
2391                // Join the remaining segments and return the result
2392                String s = new String(path, 0, join(path, segs));
2393                if (s.equals(ps)) {
2394                    // string was already normalized
2395                    return ps;
2396                }
2397                return s;
2398            }
2399
2400            // -- Character classes for parsing --
2401
2402            // RFC2396 precisely specifies which characters in the US-ASCII charset are
2403            // permissible in the various components of a URI reference.  We here
2404            // define a set of mask pairs to aid in enforcing these restrictions.  Each
2405            // mask pair consists of two longs, a low mask and a high mask.  Taken
2406            // together they represent a 128-bit mask, where bit i is set iff the
2407            // character with value i is permitted.
2408            //
2409            // This approach is more efficient than sequentially searching arrays of
2410            // permitted characters.  It could be made still more efficient by
2411            // precompiling the mask information so that a character's presence in a
2412            // given mask could be determined by a single table lookup.
2413
2414            // Compute the low-order mask for the characters in the given string
2415            private static long lowMask(String chars) {
2416                int n = chars.length();
2417                long m = 0;
2418                for (int i = 0; i < n; i++) {
2419                    char c = chars.charAt(i);
2420                    if (c < 64)
2421                        m |= (1L << c);
2422                }
2423                return m;
2424            }
2425
2426            // Compute the high-order mask for the characters in the given string
2427            private static long highMask(String chars) {
2428                int n = chars.length();
2429                long m = 0;
2430                for (int i = 0; i < n; i++) {
2431                    char c = chars.charAt(i);
2432                    if ((c >= 64) && (c < 128))
2433                        m |= (1L << (c - 64));
2434                }
2435                return m;
2436            }
2437
2438            // Compute a low-order mask for the characters
2439            // between first and last, inclusive
2440            private static long lowMask(char first, char last) {
2441                long m = 0;
2442                int f = Math.max(Math.min(first, 63), 0);
2443                int l = Math.max(Math.min(last, 63), 0);
2444                for (int i = f; i <= l; i++)
2445                    m |= 1L << i;
2446                return m;
2447            }
2448
2449            // Compute a high-order mask for the characters
2450            // between first and last, inclusive
2451            private static long highMask(char first, char last) {
2452                long m = 0;
2453                int f = Math.max(Math.min(first, 127), 64) - 64;
2454                int l = Math.max(Math.min(last, 127), 64) - 64;
2455                for (int i = f; i <= l; i++)
2456                    m |= 1L << i;
2457                return m;
2458            }
2459
2460            // Tell whether the given character is permitted by the given mask pair
2461            private static boolean match(char c, long lowMask, long highMask) {
2462                if (c < 64)
2463                    return ((1L << c) & lowMask) != 0;
2464                if (c < 128)
2465                    return ((1L << (c - 64)) & highMask) != 0;
2466                return false;
2467            }
2468
2469            // Character-class masks, in reverse order from RFC2396 because
2470            // initializers for static fields cannot make forward references.
2471
2472            // digit    = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
2473            //            "8" | "9"
2474            private static final long L_DIGIT = lowMask('0', '9');
2475            private static final long H_DIGIT = 0L;
2476
2477            // upalpha  = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |
2478            //            "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
2479            //            "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
2480            private static final long L_UPALPHA = 0L;
2481            private static final long H_UPALPHA = highMask('A', 'Z');
2482
2483            // lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |
2484            //            "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |
2485            //            "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
2486            private static final long L_LOWALPHA = 0L;
2487            private static final long H_LOWALPHA = highMask('a', 'z');
2488
2489            // alpha         = lowalpha | upalpha
2490            private static final long L_ALPHA = L_LOWALPHA | L_UPALPHA;
2491            private static final long H_ALPHA = H_LOWALPHA | H_UPALPHA;
2492
2493            // alphanum      = alpha | digit
2494            private static final long L_ALPHANUM = L_DIGIT | L_ALPHA;
2495            private static final long H_ALPHANUM = H_DIGIT | H_ALPHA;
2496
2497            // hex           = digit | "A" | "B" | "C" | "D" | "E" | "F" |
2498            //                         "a" | "b" | "c" | "d" | "e" | "f"
2499            private static final long L_HEX = L_DIGIT;
2500            private static final long H_HEX = highMask('A', 'F')
2501                    | highMask('a', 'f');
2502
2503            // mark          = "-" | "_" | "." | "!" | "~" | "*" | "'" |
2504            //                 "(" | ")"
2505            private static final long L_MARK = lowMask("-_.!~*'()");
2506            private static final long H_MARK = highMask("-_.!~*'()");
2507
2508            // unreserved    = alphanum | mark
2509            private static final long L_UNRESERVED = L_ALPHANUM | L_MARK;
2510            private static final long H_UNRESERVED = H_ALPHANUM | H_MARK;
2511
2512            // reserved      = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" |
2513            //                 "$" | "," | "[" | "]"
2514            // Added per RFC2732: "[", "]"
2515            private static final long L_RESERVED = lowMask(";/?:@&=+$,[]");
2516            private static final long H_RESERVED = highMask(";/?:@&=+$,[]");
2517
2518            // The zero'th bit is used to indicate that escape pairs and non-US-ASCII
2519            // characters are allowed; this is handled by the scanEscape method below.
2520            private static final long L_ESCAPED = 1L;
2521            private static final long H_ESCAPED = 0L;
2522
2523            // uric          = reserved | unreserved | escaped
2524            private static final long L_URIC = L_RESERVED | L_UNRESERVED
2525                    | L_ESCAPED;
2526            private static final long H_URIC = H_RESERVED | H_UNRESERVED
2527                    | H_ESCAPED;
2528
2529            // pchar         = unreserved | escaped |
2530            //                 ":" | "@" | "&" | "=" | "+" | "$" | ","
2531            private static final long L_PCHAR = L_UNRESERVED | L_ESCAPED
2532                    | lowMask(":@&=+$,");
2533            private static final long H_PCHAR = H_UNRESERVED | H_ESCAPED
2534                    | highMask(":@&=+$,");
2535
2536            // All valid path characters
2537            private static final long L_PATH = L_PCHAR | lowMask(";/");
2538            private static final long H_PATH = H_PCHAR | highMask(";/");
2539
2540            // Dash, for use in domainlabel and toplabel
2541            private static final long L_DASH = lowMask("-");
2542            private static final long H_DASH = highMask("-");
2543
2544            // Dot, for use in hostnames
2545            private static final long L_DOT = lowMask(".");
2546            private static final long H_DOT = highMask(".");
2547
2548            // userinfo      = *( unreserved | escaped |
2549            //                    ";" | ":" | "&" | "=" | "+" | "$" | "," )
2550            private static final long L_USERINFO = L_UNRESERVED | L_ESCAPED
2551                    | lowMask(";:&=+$,");
2552            private static final long H_USERINFO = H_UNRESERVED | H_ESCAPED
2553                    | highMask(";:&=+$,");
2554
2555            // reg_name      = 1*( unreserved | escaped | "$" | "," |
2556            //                     ";" | ":" | "@" | "&" | "=" | "+" )
2557            private static final long L_REG_NAME = L_UNRESERVED | L_ESCAPED
2558                    | lowMask("$,;:@&=+");
2559            private static final long H_REG_NAME = H_UNRESERVED | H_ESCAPED
2560                    | highMask("$,;:@&=+");
2561
2562            // All valid characters for server-based authorities
2563            private static final long L_SERVER = L_USERINFO | L_ALPHANUM
2564                    | L_DASH | lowMask(".:@[]");
2565            private static final long H_SERVER = H_USERINFO | H_ALPHANUM
2566                    | H_DASH | highMask(".:@[]");
2567
2568            // Special case of server authority that represents an IPv6 address
2569            // In this case, a % does not signify an escape sequence
2570            private static final long L_SERVER_PERCENT = L_SERVER
2571                    | lowMask("%");
2572            private static final long H_SERVER_PERCENT = H_SERVER
2573                    | highMask("%");
2574            private static final long L_LEFT_BRACKET = lowMask("[");
2575            private static final long H_LEFT_BRACKET = highMask("[");
2576
2577            // scheme        = alpha *( alpha | digit | "+" | "-" | "." )
2578            private static final long L_SCHEME = L_ALPHA | L_DIGIT
2579                    | lowMask("+-.");
2580            private static final long H_SCHEME = H_ALPHA | H_DIGIT
2581                    | highMask("+-.");
2582
2583            // uric_no_slash = unreserved | escaped | ";" | "?" | ":" | "@" |
2584            //                 "&" | "=" | "+" | "$" | ","
2585            private static final long L_URIC_NO_SLASH = L_UNRESERVED
2586                    | L_ESCAPED | lowMask(";?:@&=+$,");
2587            private static final long H_URIC_NO_SLASH = H_UNRESERVED
2588                    | H_ESCAPED | highMask(";?:@&=+$,");
2589
2590            // -- Escaping and encoding --
2591
2592            private final static char[] hexDigits = { '0', '1', '2', '3', '4',
2593                    '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
2594
2595            private static void appendEscape(StringBuffer sb, byte b) {
2596                sb.append('%');
2597                sb.append(hexDigits[(b >> 4) & 0x0f]);
2598                sb.append(hexDigits[(b >> 0) & 0x0f]);
2599            }
2600
2601            private static void appendEncoded(StringBuffer sb, char c) {
2602                ByteBuffer bb = null;
2603                try {
2604                    bb = ThreadLocalCoders.encoderFor("UTF-8").encode(
2605                            CharBuffer.wrap("" + c));
2606                } catch (CharacterCodingException x) {
2607                    assert false;
2608                }
2609                while (bb.hasRemaining()) {
2610                    int b = bb.get() & 0xff;
2611                    if (b >= 0x80)
2612                        appendEscape(sb, (byte) b);
2613                    else
2614                        sb.append((char) b);
2615                }
2616            }
2617
2618            // Quote any characters in s that are not permitted
2619            // by the given mask pair
2620            //
2621            private static String quote(String s, long lowMask, long highMask) {
2622                int n = s.length();
2623                StringBuffer sb = null;
2624                boolean allowNonASCII = ((lowMask & L_ESCAPED) != 0);
2625                for (int i = 0; i < s.length(); i++) {
2626                    char c = s.charAt(i);
2627                    if (c < '\u0080') {
2628                        if (!match(c, lowMask, highMask)) {
2629                            if (sb == null) {
2630                                sb = new StringBuffer();
2631                                sb.append(s.substring(0, i));
2632                            }
2633                            appendEscape(sb, (byte) c);
2634                        } else {
2635                            if (sb != null)
2636                                sb.append(c);
2637                        }
2638                    } else if (allowNonASCII
2639                            && (Character.isSpaceChar(c) || Character
2640                                    .isISOControl(c))) {
2641                        if (sb == null) {
2642                            sb = new StringBuffer();
2643                            sb.append(s.substring(0, i));
2644                        }
2645                        appendEncoded(sb, c);
2646                    } else {
2647                        if (sb != null)
2648                            sb.append(c);
2649                    }
2650                }
2651                return (sb == null) ? s : sb.toString();
2652            }
2653
2654            // Encodes all characters >= \u0080 into escaped, normalized UTF-8 octets,
2655            // assuming that s is otherwise legal
2656            //
2657            private static String encode(String s) {
2658                int n = s.length();
2659                if (n == 0)
2660                    return s;
2661
2662                // First check whether we actually need to encode
2663                for (int i = 0;;) {
2664                    if (s.charAt(i) >= '\u0080')
2665                        break;
2666                    if (++i >= n)
2667                        return s;
2668                }
2669
2670                String ns = Normalizer.normalize(s, Normalizer.Form.NFC);
2671                ByteBuffer bb = null;
2672                try {
2673                    bb = ThreadLocalCoders.encoderFor("UTF-8").encode(
2674                            CharBuffer.wrap(ns));
2675                } catch (CharacterCodingException x) {
2676                    assert false;
2677                }
2678
2679                StringBuffer sb = new StringBuffer();
2680                while (bb.hasRemaining()) {
2681                    int b = bb.get() & 0xff;
2682                    if (b >= 0x80)
2683                        appendEscape(sb, (byte) b);
2684                    else
2685                        sb.append((char) b);
2686                }
2687                return sb.toString();
2688            }
2689
2690            private static int decode(char c) {
2691                if ((c >= '0') && (c <= '9'))
2692                    return c - '0';
2693                if ((c >= 'a') && (c <= 'f'))
2694                    return c - 'a' + 10;
2695                if ((c >= 'A') && (c <= 'F'))
2696                    return c - 'A' + 10;
2697                assert false;
2698                return -1;
2699            }
2700
2701            private static byte decode(char c1, char c2) {
2702                return (byte) (((decode(c1) & 0xf) << 4) | ((decode(c2) & 0xf) << 0));
2703            }
2704
2705            // Evaluates all escapes in s, applying UTF-8 decoding if needed.  Assumes
2706            // that escapes are well-formed syntactically, i.e., of the form %XX.  If a
2707            // sequence of escaped octets is not valid UTF-8 then the erroneous octets
2708            // are replaced with '\uFFFD'.
2709            // Exception: any "%" found between "[]" is left alone. It is an IPv6 literal
2710            //            with a scope_id
2711            //
2712            private static String decode(String s) {
2713                if (s == null)
2714                    return s;
2715                int n = s.length();
2716                if (n == 0)
2717                    return s;
2718                if (s.indexOf('%') < 0)
2719                    return s;
2720
2721                StringBuffer sb = new StringBuffer(n);
2722                ByteBuffer bb = ByteBuffer.allocate(n);
2723                CharBuffer cb = CharBuffer.allocate(n);
2724                CharsetDecoder dec = ThreadLocalCoders.decoderFor("UTF-8")
2725                        .onMalformedInput(CodingErrorAction.REPLACE)
2726                        .onUnmappableCharacter(CodingErrorAction.REPLACE);
2727
2728                // This is not horribly efficient, but it will do for now
2729                char c = s.charAt(0);
2730                boolean betweenBrackets = false;
2731
2732                for (int i = 0; i < n;) {
2733                    assert c == s.charAt(i); // Loop invariant
2734                    if (c == '[') {
2735                        betweenBrackets = true;
2736                    } else if (betweenBrackets && c == ']') {
2737                        betweenBrackets = false;
2738                    }
2739                    if (c != '%' || betweenBrackets) {
2740                        sb.append(c);
2741                        if (++i >= n)
2742                            break;
2743                        c = s.charAt(i);
2744                        continue;
2745                    }
2746                    bb.clear();
2747                    int ui = i;
2748                    for (;;) {
2749                        assert (n - i >= 2);
2750                        bb.put(decode(s.charAt(++i), s.charAt(++i)));
2751                        if (++i >= n)
2752                            break;
2753                        c = s.charAt(i);
2754                        if (c != '%')
2755                            break;
2756                    }
2757                    bb.flip();
2758                    cb.clear();
2759                    dec.reset();
2760                    CoderResult cr = dec.decode(bb, cb, true);
2761                    assert cr.isUnderflow();
2762                    cr = dec.flush(cb);
2763                    assert cr.isUnderflow();
2764                    sb.append(cb.flip().toString());
2765                }
2766
2767                return sb.toString();
2768            }
2769
2770            // -- Parsing --
2771
2772            // For convenience we wrap the input URI string in a new instance of the
2773            // following internal class.  This saves always having to pass the input
2774            // string as an argument to each internal scan/parse method.
2775
2776            private class Parser {
2777
2778                private String input; // URI input string
2779                private boolean requireServerAuthority = false;
2780
2781                Parser(String s) {
2782                    input = s;
2783                    string = s;
2784                }
2785
2786                // -- Methods for throwing URISyntaxException in various ways --
2787
2788                private void fail(String reason) throws URISyntaxException {
2789                    throw new URISyntaxException(input, reason);
2790                }
2791
2792                private void fail(String reason, int p)
2793                        throws URISyntaxException {
2794                    throw new URISyntaxException(input, reason, p);
2795                }
2796
2797                private void failExpecting(String expected, int p)
2798                        throws URISyntaxException {
2799                    fail("Expected " + expected, p);
2800                }
2801
2802                private void failExpecting(String expected, String prior, int p)
2803                        throws URISyntaxException {
2804                    fail("Expected " + expected + " following " + prior, p);
2805                }
2806
2807                // -- Simple access to the input string --
2808
2809                // Return a substring of the input string
2810                //
2811                private String substring(int start, int end) {
2812                    return input.substring(start, end);
2813                }
2814
2815                // Return the char at position p,
2816                // assuming that p < input.length()
2817                //
2818                private char charAt(int p) {
2819                    return input.charAt(p);
2820                }
2821
2822                // Tells whether start < end and, if so, whether charAt(start) == c
2823                //
2824                private boolean at(int start, int end, char c) {
2825                    return (start < end) && (charAt(start) == c);
2826                }
2827
2828                // Tells whether start + s.length() < end and, if so,
2829                // whether the chars at the start position match s exactly
2830                //
2831                private boolean at(int start, int end, String s) {
2832                    int p = start;
2833                    int sn = s.length();
2834                    if (sn > end - p)
2835                        return false;
2836                    int i = 0;
2837                    while (i < sn) {
2838                        if (charAt(p++) != s.charAt(i)) {
2839                            break;
2840                        }
2841                        i++;
2842                    }
2843                    return (i == sn);
2844                }
2845
2846                // -- Scanning --
2847
2848                // The various scan and parse methods that follow use a uniform
2849                // convention of taking the current start position and end index as
2850                // their first two arguments.  The start is inclusive while the end is
2851                // exclusive, just as in the String class, i.e., a start/end pair
2852                // denotes the left-open interval [start, end) of the input string.
2853                //
2854                // These methods never proceed past the end position.  They may return
2855                // -1 to indicate outright failure, but more often they simply return
2856                // the position of the first char after the last char scanned.  Thus
2857                // a typical idiom is
2858                //
2859                //     int p = start;
2860                //     int q = scan(p, end, ...);
2861                //     if (q > p)
2862                //         // We scanned something
2863                //         ...;
2864                //     else if (q == p)
2865                //         // We scanned nothing
2866                //         ...;
2867                //     else if (q == -1)
2868                //         // Something went wrong
2869                //         ...;
2870
2871                // Scan a specific char: If the char at the given start position is
2872                // equal to c, return the index of the next char; otherwise, return the
2873                // start position.
2874                //
2875                private int scan(int start, int end, char c) {
2876                    if ((start < end) && (charAt(start) == c))
2877                        return start + 1;
2878                    return start;
2879                }
2880
2881                // Scan forward from the given start position.  Stop at the first char
2882                // in the err string (in which case -1 is returned), or the first char
2883                // in the stop string (in which case the index of the preceding char is
2884                // returned), or the end of the input string (in which case the length
2885                // of the input string is returned).  May return the start position if
2886                // nothing matches.
2887                //
2888                private int scan(int start, int end, String err, String stop) {
2889                    int p = start;
2890                    while (p < end) {
2891                        char c = charAt(p);
2892                        if (err.indexOf(c) >= 0)
2893                            return -1;
2894                        if (stop.indexOf(c) >= 0)
2895                            break;
2896                        p++;
2897                    }
2898                    return p;
2899                }
2900
2901                // Scan a potential escape sequence, starting at the given position,
2902                // with the given first char (i.e., charAt(start) == c).
2903                //
2904                // This method assumes that if escapes are allowed then visible
2905                // non-US-ASCII chars are also allowed.
2906                //
2907                private int scanEscape(int start, int n, char first)
2908                        throws URISyntaxException {
2909                    int p = start;
2910                    char c = first;
2911                    if (c == '%') {
2912                        // Process escape pair
2913                        if ((p + 3 <= n) && match(charAt(p + 1), L_HEX, H_HEX)
2914                                && match(charAt(p + 2), L_HEX, H_HEX)) {
2915                            return p + 3;
2916                        }
2917                        fail("Malformed escape pair", p);
2918                    } else if ((c > 128) && !Character.isSpaceChar(c)
2919                            && !Character.isISOControl(c)) {
2920                        // Allow unescaped but visible non-US-ASCII chars
2921                        return p + 1;
2922                    }
2923                    return p;
2924                }
2925
2926                // Scan chars that match the given mask pair
2927                //
2928                private int scan(int start, int n, long lowMask, long highMask)
2929                        throws URISyntaxException {
2930                    int p = start;
2931                    while (p < n) {
2932                        char c = charAt(p);
2933                        if (match(c, lowMask, highMask)) {
2934                            p++;
2935                            continue;
2936                        }
2937                        if ((lowMask & L_ESCAPED) != 0) {
2938                            int q = scanEscape(p, n, c);
2939                            if (q > p) {
2940                                p = q;
2941                                continue;
2942                            }
2943                        }
2944                        break;
2945                    }
2946                    return p;
2947                }
2948
2949                // Check that each of the chars in [start, end) matches the given mask
2950                //
2951                private void checkChars(int start, int end, long lowMask,
2952                        long highMask, String what) throws URISyntaxException {
2953                    int p = scan(start, end, lowMask, highMask);
2954                    if (p < end)
2955                        fail("Illegal character in " + what, p);
2956                }
2957
2958                // Check that the char at position p matches the given mask
2959                //
2960                private void checkChar(int p, long lowMask, long highMask,
2961                        String what) throws URISyntaxException {
2962                    checkChars(p, p + 1, lowMask, highMask, what);
2963                }
2964
2965                // -- Parsing --
2966
2967                // [<scheme>:]<scheme-specific-part>[#<fragment>]
2968                //
2969                void parse(boolean rsa) throws URISyntaxException {
2970                    requireServerAuthority = rsa;
2971                    int ssp; // Start of scheme-specific part
2972                    int n = input.length();
2973                    int p = scan(0, n, "/?#", ":");
2974                    if ((p >= 0) && at(p, n, ':')) {
2975                        if (p == 0)
2976                            failExpecting("scheme name", 0);
2977                        checkChar(0, L_ALPHA, H_ALPHA, "scheme name");
2978                        checkChars(1, p, L_SCHEME, H_SCHEME, "scheme name");
2979                        scheme = substring(0, p);
2980                        p++; // Skip ':'
2981                        ssp = p;
2982                        if (at(p, n, '/')) {
2983                            p = parseHierarchical(p, n);
2984                        } else {
2985                            int q = scan(p, n, "", "#");
2986                            if (q <= p)
2987                                failExpecting("scheme-specific part", p);
2988                            checkChars(p, q, L_URIC, H_URIC, "opaque part");
2989                            p = q;
2990                        }
2991                    } else {
2992                        ssp = 0;
2993                        p = parseHierarchical(0, n);
2994                    }
2995                    schemeSpecificPart = substring(ssp, p);
2996                    if (at(p, n, '#')) {
2997                        checkChars(p + 1, n, L_URIC, H_URIC, "fragment");
2998                        fragment = substring(p + 1, n);
2999                        p = n;
3000                    }
3001                    if (p < n)
3002                        fail("end of URI", p);
3003                }
3004
3005                // [//authority]<path>[?<query>]
3006                //
3007                // DEVIATION from RFC2396: We allow an empty authority component as
3008                // long as it's followed by a non-empty path, query component, or
3009                // fragment component.  This is so that URIs such as "file:///foo/bar"
3010                // will parse.  This seems to be the intent of RFC2396, though the
3011                // grammar does not permit it.  If the authority is empty then the
3012                // userInfo, host, and port components are undefined.
3013                //
3014                // DEVIATION from RFC2396: We allow empty relative paths.  This seems
3015                // to be the intent of RFC2396, but the grammar does not permit it.
3016                // The primary consequence of this deviation is that "#f" parses as a
3017                // relative URI with an empty path.
3018                //
3019                private int parseHierarchical(int start, int n)
3020                        throws URISyntaxException {
3021                    int p = start;
3022                    if (at(p, n, '/') && at(p + 1, n, '/')) {
3023                        p += 2;
3024                        int q = scan(p, n, "", "/?#");
3025                        if (q > p) {
3026                            p = parseAuthority(p, q);
3027                        } else if (q < n) {
3028                            // DEVIATION: Allow empty authority prior to non-empty 
3029                            // path, query component or fragment identifier
3030                        } else
3031                            failExpecting("authority", p);
3032                    }
3033                    int q = scan(p, n, "", "?#"); // DEVIATION: May be empty
3034                    checkChars(p, q, L_PATH, H_PATH, "path");
3035                    path = substring(p, q);
3036                    p = q;
3037                    if (at(p, n, '?')) {
3038                        p++;
3039                        q = scan(p, n, "", "#");
3040                        checkChars(p, q, L_URIC, H_URIC, "query");
3041                        query = substring(p, q);
3042                        p = q;
3043                    }
3044                    return p;
3045                }
3046
3047                // authority     = server | reg_name
3048                //
3049                // Ambiguity: An authority that is a registry name rather than a server
3050                // might have a prefix that parses as a server.  We use the fact that
3051                // the authority component is always followed by '/' or the end of the
3052                // input string to resolve this: If the complete authority did not
3053                // parse as a server then we try to parse it as a registry name.
3054                //
3055                private int parseAuthority(int start, int n)
3056                        throws URISyntaxException {
3057                    int p = start;
3058                    int q = p;
3059                    URISyntaxException ex = null;
3060
3061                    boolean serverChars;
3062                    boolean regChars;
3063
3064                    if (scan(p, n, "", "]") > p) {
3065                        // contains a literal IPv6 address, therefore % is allowed
3066                        serverChars = (scan(p, n, L_SERVER_PERCENT,
3067                                H_SERVER_PERCENT) == n);
3068                    } else {
3069                        serverChars = (scan(p, n, L_SERVER, H_SERVER) == n);
3070                    }
3071                    regChars = (scan(p, n, L_REG_NAME, H_REG_NAME) == n);
3072
3073                    if (regChars && !serverChars) {
3074                        // Must be a registry-based authority
3075                        authority = substring(p, n);
3076                        return n;
3077                    }
3078
3079                    if (serverChars) {
3080                        // Might be (probably is) a server-based authority, so attempt
3081                        // to parse it as such.  If the attempt fails, try to treat it
3082                        // as a registry-based authority.
3083                        try {
3084                            q = parseServer(p, n);
3085                            if (q < n)
3086                                failExpecting("end of authority", q);
3087                            authority = substring(p, n);
3088                        } catch (URISyntaxException x) {
3089                            // Undo results of failed parse
3090                            userInfo = null;
3091                            host = null;
3092                            port = -1;
3093                            if (requireServerAuthority) {
3094                                // If we're insisting upon a server-based authority,
3095                                // then just re-throw the exception
3096                                throw x;
3097                            } else {
3098                                // Save the exception in case it doesn't parse as a
3099                                // registry either
3100                                ex = x;
3101                                q = p;
3102                            }
3103                        }
3104                    }
3105
3106                    if (q < n) {
3107                        if (regChars) {
3108                            // Registry-based authority
3109                            authority = substring(p, n);
3110                        } else if (ex != null) {
3111                            // Re-throw exception; it was probably due to
3112                            // a malformed IPv6 address
3113                            throw ex;
3114                        } else {
3115                            fail("Illegal character in authority", q);
3116                        }
3117                    }
3118
3119                    return n;
3120                }
3121
3122                // [<userinfo>@]<host>[:<port>]
3123                //
3124                private int parseServer(int start, int n)
3125                        throws URISyntaxException {
3126                    int p = start;
3127                    int q;
3128
3129                    // userinfo
3130                    q = scan(p, n, "/?#", "@");
3131                    if ((q >= p) && at(q, n, '@')) {
3132                        checkChars(p, q, L_USERINFO, H_USERINFO, "user info");
3133                        userInfo = substring(p, q);
3134                        p = q + 1; // Skip '@'
3135                    }
3136
3137                    // hostname, IPv4 address, or IPv6 address
3138                    if (at(p, n, '[')) {
3139                        // DEVIATION from RFC2396: Support IPv6 addresses, per RFC2732
3140                        p++;
3141                        q = scan(p, n, "/?#", "]");
3142                        if ((q > p) && at(q, n, ']')) {
3143                            // look for a "%" scope id
3144                            int r = scan(p, q, "", "%");
3145                            if (r > p) {
3146                                parseIPv6Reference(p, r);
3147                                if (r + 1 == q) {
3148                                    fail("scope id expected");
3149                                }
3150                                checkChars(r + 1, q, L_ALPHANUM, H_ALPHANUM,
3151                                        "scope id");
3152                            } else {
3153                                parseIPv6Reference(p, q);
3154                            }
3155                            host = substring(p - 1, q + 1);
3156                            p = q + 1;
3157                        } else {
3158                            failExpecting("closing bracket for IPv6 address", q);
3159                        }
3160                    } else {
3161                        q = parseIPv4Address(p, n);
3162                        if (q <= p)
3163                            q = parseHostname(p, n);
3164                        p = q;
3165                    }
3166
3167                    // port
3168                    if (at(p, n, ':')) {
3169                        p++;
3170                        q = scan(p, n, "", "/");
3171                        if (q > p) {
3172                            checkChars(p, q, L_DIGIT, H_DIGIT, "port number");
3173                            try {
3174                                port = Integer.parseInt(substring(p, q));
3175                            } catch (NumberFormatException x) {
3176                                fail("Malformed port number", p);
3177                            }
3178                            p = q;
3179                        }
3180                    }
3181                    if (p < n)
3182                        failExpecting("port number", p);
3183
3184                    return p;
3185                }
3186
3187                // Scan a string of decimal digits whose value fits in a byte
3188                //
3189                private int scanByte(int start, int n)
3190                        throws URISyntaxException {
3191                    int p = start;
3192                    int q = scan(p, n, L_DIGIT, H_DIGIT);
3193                    if (q <= p)
3194                        return q;
3195                    if (Integer.parseInt(substring(p, q)) > 255)
3196                        return p;
3197                    return q;
3198                }
3199
3200                // Scan an IPv4 address.
3201                //
3202                // If the strict argument is true then we require that the given
3203                // interval contain nothing besides an IPv4 address; if it is false
3204                // then we only require that it start with an IPv4 address.
3205                //
3206                // If the interval does not contain or start with (depending upon the
3207                // strict argument) a legal IPv4 address characters then we return -1
3208                // immediately; otherwise we insist that these characters parse as a
3209                // legal IPv4 address and throw an exception on failure.
3210                //
3211                // We assume that any string of decimal digits and dots must be an IPv4
3212                // address.  It won't parse as a hostname anyway, so making that
3213                // assumption here allows more meaningful exceptions to be thrown.
3214                //
3215                private int scanIPv4Address(int start, int n, boolean strict)
3216                        throws URISyntaxException {
3217                    int p = start;
3218                    int q;
3219                    int m = scan(p, n, L_DIGIT | L_DOT, H_DIGIT | H_DOT);
3220                    if ((m <= p) || (strict && (m != n)))
3221                        return -1;
3222                    for (;;) {
3223                        // Per RFC2732: At most three digits per byte
3224                        // Further constraint: Each element fits in a byte
3225                        if ((q = scanByte(p, m)) <= p)
3226                            break;
3227                        p = q;
3228                        if ((q = scan(p, m, '.')) <= p)
3229                            break;
3230                        p = q;
3231                        if ((q = scanByte(p, m)) <= p)
3232                            break;
3233                        p = q;
3234                        if ((q = scan(p, m, '.')) <= p)
3235                            break;
3236                        p = q;
3237                        if ((q = scanByte(p, m)) <= p)
3238                            break;
3239                        p = q;
3240                        if ((q = scan(p, m, '.')) <= p)
3241                            break;
3242                        p = q;
3243                        if ((q = scanByte(p, m)) <= p)
3244                            break;
3245                        p = q;
3246                        if (q < m)
3247                            break;
3248                        return q;
3249                    }
3250                    fail("Malformed IPv4 address", q);
3251                    return -1;
3252                }
3253
3254                // Take an IPv4 address: Throw an exception if the given interval
3255                // contains anything except an IPv4 address
3256                //
3257                private int takeIPv4Address(int start, int n, String expected)
3258                        throws URISyntaxException {
3259                    int p = scanIPv4Address(start, n, true);
3260                    if (p <= start)
3261                        failExpecting(expected, start);
3262                    return p;
3263                }
3264
3265                // Attempt to parse an IPv4 address, returning -1 on failure but
3266                // allowing the given interval to contain [:<characters>] after
3267                // the IPv4 address.
3268                //
3269                private int parseIPv4Address(int start, int n) {
3270                    int p;
3271
3272                    try {
3273                        p = scanIPv4Address(start, n, false);
3274                    } catch (URISyntaxException x) {
3275                        return -1;
3276                    } catch (NumberFormatException nfe) {
3277                        return -1;
3278                    }
3279
3280                    if (p > start && p < n) {
3281                        // IPv4 address is followed by something - check that
3282                        // it's a ":" as this is the only valid character to
3283                        // follow an address.
3284                        if (charAt(p) != ':') {
3285                            p = -1;
3286                        }
3287                    }
3288
3289                    if (p > start)
3290                        host = substring(start, p);
3291
3292                    return p;
3293                }
3294
3295                // hostname      = domainlabel [ "." ] | 1*( domainlabel "." ) toplabel [ "." ] 
3296                // domainlabel   = alphanum | alphanum *( alphanum | "-" ) alphanum
3297                // toplabel      = alpha | alpha *( alphanum | "-" ) alphanum
3298                //
3299                private int parseHostname(int start, int n)
3300                        throws URISyntaxException {
3301                    int p = start;
3302                    int q;
3303                    int l = -1; // Start of last parsed label
3304
3305                    do {
3306                        // domainlabel = alphanum [ *( alphanum | "-" ) alphanum ]
3307                        q = scan(p, n, L_ALPHANUM, H_ALPHANUM);
3308                        if (q <= p)
3309                            break;
3310                        l = p;
3311                        if (q > p) {
3312                            p = q;
3313                            q = scan(p, n, L_ALPHANUM | L_DASH, H_ALPHANUM
3314                                    | H_DASH);
3315                            if (q > p) {
3316                                if (charAt(q - 1) == '-')
3317                                    fail("Illegal character in hostname", q - 1);
3318                                p = q;
3319                            }
3320                        }
3321                        q = scan(p, n, '.');
3322                        if (q <= p)
3323                            break;
3324                        p = q;
3325                    } while (p < n);
3326
3327                    if ((p < n) && !at(p, n, ':'))
3328                        fail("Illegal character in hostname", p);
3329
3330                    if (l < 0)
3331                        failExpecting("hostname", start);
3332
3333                    // for a fully qualified hostname check that the rightmost
3334                    // label starts with an alpha character.
3335                    if (l > start && !match(charAt(l), L_ALPHA, H_ALPHA)) {
3336                        fail("Illegal character in hostname", l);
3337                    }
3338
3339                    host = substring(start, p);
3340                    return p;
3341                }
3342
3343                // IPv6 address parsing, from RFC2373: IPv6 Addressing Architecture
3344                //
3345                // Bug: The grammar in RFC2373 Appendix B does not allow addresses of
3346                // the form ::12.34.56.78, which are clearly shown in the examples
3347                // earlier in the document.  Here is the original grammar:
3348                //
3349                //   IPv6address = hexpart [ ":" IPv4address ]
3350                //   hexpart     = hexseq | hexseq "::" [ hexseq ] | "::" [ hexseq ]
3351                //   hexseq      = hex4 *( ":" hex4)
3352                //   hex4        = 1*4HEXDIG
3353                //
3354                // We therefore use the following revised grammar:
3355                //
3356                //   IPv6address = hexseq [ ":" IPv4address ]
3357                //                 | hexseq [ "::" [ hexpost ] ]
3358                //                 | "::" [ hexpost ]
3359                //   hexpost     = hexseq | hexseq ":" IPv4address | IPv4address
3360                //   hexseq      = hex4 *( ":" hex4)
3361                //   hex4        = 1*4HEXDIG
3362                //
3363                // This covers all and only the following cases:
3364                //
3365                //   hexseq
3366                //   hexseq : IPv4address
3367                //   hexseq ::
3368                //   hexseq :: hexseq
3369                //   hexseq :: hexseq : IPv4address
3370                //   hexseq :: IPv4address
3371                //   :: hexseq
3372                //   :: hexseq : IPv4address
3373                //   :: IPv4address
3374                //   ::
3375                //
3376                // Additionally we constrain the IPv6 address as follows :-
3377                //
3378                //  i.  IPv6 addresses without compressed zeros should contain
3379                //      exactly 16 bytes.
3380                //
3381                //  ii. IPv6 addresses with compressed zeros should contain
3382                //      less than 16 bytes.
3383
3384                private int ipv6byteCount = 0;
3385
3386                private int parseIPv6Reference(int start, int n)
3387                        throws URISyntaxException {
3388                    int p = start;
3389                    int q;
3390                    boolean compressedZeros = false;
3391
3392                    q = scanHexSeq(p, n);
3393
3394                    if (q > p) {
3395                        p = q;
3396                        if (at(p, n, "::")) {
3397                            compressedZeros = true;
3398                            p = scanHexPost(p + 2, n);
3399                        } else if (at(p, n, ':')) {
3400                            p = takeIPv4Address(p + 1, n, "IPv4 address");
3401                            ipv6byteCount += 4;
3402                        }
3403                    } else if (at(p, n, "::")) {
3404                        compressedZeros = true;
3405                        p = scanHexPost(p + 2, n);
3406                    }
3407                    if (p < n)
3408                        fail("Malformed IPv6 address", start);
3409                    if (ipv6byteCount > 16)
3410                        fail("IPv6 address too long", start);
3411                    if (!compressedZeros && ipv6byteCount < 16)
3412                        fail("IPv6 address too short", start);
3413                    if (compressedZeros && ipv6byteCount == 16)
3414                        fail("Malformed IPv6 address", start);
3415
3416                    return p;
3417                }
3418
3419                private int scanHexPost(int start, int n)
3420                        throws URISyntaxException {
3421                    int p = start;
3422                    int q;
3423
3424                    if (p == n)
3425                        return p;
3426
3427                    q = scanHexSeq(p, n);
3428                    if (q > p) {
3429                        p = q;
3430                        if (at(p, n, ':')) {
3431                            p++;
3432                            p = takeIPv4Address(p, n,
3433                                    "hex digits or IPv4 address");
3434                            ipv6byteCount += 4;
3435                        }
3436                    } else {
3437                        p = takeIPv4Address(p, n, "hex digits or IPv4 address");
3438                        ipv6byteCount += 4;
3439                    }
3440                    return p;
3441                }
3442
3443                // Scan a hex sequence; return -1 if one could not be scanned
3444                //
3445                private int scanHexSeq(int start, int n)
3446                        throws URISyntaxException {
3447                    int p = start;
3448                    int q;
3449
3450                    q = scan(p, n, L_HEX, H_HEX);
3451                    if (q <= p)
3452                        return -1;
3453                    if (at(q, n, '.')) // Beginning of IPv4 address
3454                        return -1;
3455                    if (q > p + 4)
3456                        fail("IPv6 hexadecimal digit sequence too long", p);
3457                    ipv6byteCount += 2;
3458                    p = q;
3459                    while (p < n) {
3460                        if (!at(p, n, ':'))
3461                            break;
3462                        if (at(p + 1, n, ':'))
3463                            break; // "::"
3464                        p++;
3465                        q = scan(p, n, L_HEX, H_HEX);
3466                        if (q <= p)
3467                            failExpecting("digits for an IPv6 address", p);
3468                        if (at(q, n, '.')) { // Beginning of IPv4 address
3469                            p--;
3470                            break;
3471                        }
3472                        if (q > p + 4)
3473                            fail("IPv6 hexadecimal digit sequence too long", p);
3474                        ipv6byteCount += 2;
3475                        p = q;
3476                    }
3477
3478                    return p;
3479                }
3480
3481            }
3482
3483        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.