kjParseBuild.py :  » Web-Frameworks » Zope » Zope-2.6.0 » lib » python » Products » ZGadflyDA » gadfly » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Web Frameworks » Zope 
Zope » Zope 2.6.0 » lib » python » Products » ZGadflyDA » gadfly » kjParseBuild.py
#
# python code for building a parser from a grammar
#  Copyright Aaron Robert Watters, 1994
#

# BUGS:
#  A bad grammar that has no derivations for
#  the root nonterminal may cause a name error
#  on the variable "GoodStartingPlace"

# this needs to be modified so the RULEGRAM is loaded from a
# compiled representation if available.

import string
import kjSet
import kjParser
import re

# import some constants
from kjParser import \
 TERMFLAG, NOMATCHFLAG, MOVETOFLAG, REDUCEFLAG, TRANSFLAG, KEYFLAG, \
 NONTERMFLAG, TERMFLAG, EOFFLAG, ENDOFFILETOKEN

PMODULE = kjParser.THISMODULE

# errors raised here
TokenError = "TokenError" # may happen on autogen with bad grammar
NotSLRError = "NotSLRError" # may happen for nonSLR grammar

# set this flag for regression testing at each load
RUNTESTS = 0
# set this flag to abort automatic generation on Errors
ABORTONERROR = 0

# token used to mark null productions
NULLTOKEN = (None,None)


# a derived FSM class, with closure computation methods defined
# (compilable FSMachine)
#
class CFSMachine(kjParser.FSMachine):

  def __init__(self, nonterm):
      kjParser.FSMachine.__init__(self, nonterm)

  # return the epsilon closure of the FSM as a new FSM
  #
  # DoNullMap, if set, will map unexpected tokens to
  # the "empty" state (usually creating a really big fsm)
  #
  def Eclosure(self, Epsilon, DoNullMaps=0):
    Closure = CFSMachine( self.root_nonTerminal )
    
    # compute the Epsilon Graph between states
    EGraph = kjSet.NewDG([])
    for State in range(0,self.maxState+1):
       # every state is E-connected to self
       kjSet.AddArc( EGraph, State, State )
       # add possible transition on epsilon (ONLY ONE SUPPORTED!)
       key = (State, Epsilon)
       if self.StateTokenMap.has_key(key):
          keymap = self.StateTokenMap[key]
          if keymap[0][0] != MOVETOFLAG:
             raise TypeError, "unexpected map type in StateTokenMap"
          for (Flag,ToState) in keymap:
             kjSet.AddArc( EGraph, State, ToState )
    #endfor
    # transitively close EGraph
    kjSet.TransClose( EGraph )

    # Translate EGraph into a dictionary of lists
    EMap = {}
    for State in range(0,self.maxState+1):
       EMap[State] = kjSet.Neighbors( EGraph, State )

    # make each e-closure of each self.state a state of the closure FSM.
    # here closure states assumed transient -- reset elsewhere.
    # first do the initial state
    Closure.States[ Closure.initial_state ] = \
       [TRANSFLAG, kjSet.NewSet(EMap[self.initial_state]) ]
    # do all other states (save initial and successful final states)
    #for State in range(0,self.maxState+1):
    #   if State != self.initial_state \
    #    and State != self.successful_final_state:
    #      Closure.NewSetState(TRANSFLAG, kjSet.NewSet(EMap[State]) )
    ##endfor

    # compute set of all known tokens EXCEPT EPSILON
    Tokens = kjSet.NewSet( [] )
    for (State, Token) in self.StateTokenMap.keys():
       if Token != Epsilon:
          kjSet.addMember(Token, Tokens)
    # tranform it into a list
    Tokens = kjSet.get_elts(Tokens)

    # for each state of the the closure FSM (past final) add transitions
    # and add new states as needed until all states are processed
    # (uses convention that states are allocated sequentially)
    ThisClosureState = 1
    while ThisClosureState <= Closure.maxState:
       MemberStates = kjSet.get_elts(Closure.States[ThisClosureState][1])
       # for each possible Token, compute the union UTrans of all
       # e-closures for all transitions for all member states,
       # on the Token, make  UTrans a new state (if needed),
       # and transition ThisClosureState to UTrans on Token
       for Token in Tokens:
          UTrans = kjSet.NewSet( [] )
          for MState in MemberStates:
              # if MState has a transition on Token, include 
              # EMap for the destination state
              key = (MState, Token)
              if self.StateTokenMap.has_key(key):
                 DStateTup = self.StateTokenMap[key]
                 if DStateTup[0][0] != MOVETOFLAG:
                    raise TypeError, "unknown map type"
                 for (DFlag, DState) in DStateTup:
                    for EDState in EMap[DState]:
                       kjSet.addMember(EDState, UTrans)
              #endif
          #endfor MState
          # register UTrans as a new state if needed
          UTState = Closure.NewSetState(TRANSFLAG, UTrans)
          # record transition from
          # ThisClosureState to UTState on Token
          if DoNullMaps:
             Closure.SetMap( ThisClosureState, Token, UTState)
          else:
             if not kjSet.Empty(UTrans):
                Closure.SetMap( ThisClosureState, Token, UTState)
       #endfor Token
       ThisClosureState = ThisClosureState +1
    #endwhile
    return Closure
  #enddef Eclosure

  # add an set-marked state to self if not present
  # uses self.States[s][1] as the set marking the state s
  #
  # only used by Eclosure above
  #
  def NewSetState(self, kind, InSet):
    # return existing state if one is present that matches the set
    LastState= self.maxState
    # skip state 0 (successful final state)???
    for State in range(1,LastState+1):
       MarkSet = self.States[State][1]
       if kjSet.Same(InSet,MarkSet):
          return State  # nonlocal
    #endfor
    # if not exited then allocate a new state
    LastState = LastState + 1
    self.States[LastState] = [ kind , InSet ]
    self.maxState = LastState
    return LastState
  #enddef newSetState

#endclass CFSMachine


# Ruleset class, used to compute NFA and then DFA for
#  parsing based on a list of rules.
#
class ruleset:

  def __init__(self, StartNonterm, Rulelist):
    # initialize the ruleset
    self.StartNonterm = StartNonterm
    self.Rules = Rulelist

  # method to compute prefixes and First sets for nonterminals
  def CompFirst(self):
     # uses the special null production token NULLTOKEN
     # snarfed directly from Aho+Ullman (terminals glossed)
     First = kjSet.NewDG( [] )
     # repeat the while loop until no change is made to First
     done = 0
     while not done:
       done = 1 # assume we're done until a change is made to First

       # iterate through all rules looking for a new arc to add
       # indicating Terminal > possible first token derivation
       #
       for R in self.Rules:
           GoalNonterm = R.Nonterm
           Bodylength = len(R.Body)
           # look through the body of the rule up to the token with
           # no epsilon production (yet seen)
           Bodyindex = 0
           Processindex = 1
           while Processindex:
              # unless otherwise indicated below, don't go to next token
              Processindex = 0

              # if index is past end of body then record
              # an epsilon production for this nonterminal
              if Bodyindex >= Bodylength:
                 if not kjSet.HasArc(First, GoalNonterm, NULLTOKEN ):
                    kjSet.AddArc( First, GoalNonterm, NULLTOKEN )
                    done = 0 # change made to First
              else:
                 # otherwise try to add firsts of this token
                 # to firsts of the Head of the rule.
                 Token = R.Body[Bodyindex]
                 (type, name) = Token
                 if type in (KEYFLAG,TERMFLAG):
                    # try to add this terminal to First for GoalNonterm
                    if not kjSet.HasArc(First, GoalNonterm, Token):
                       kjSet.AddArc( First, GoalNonterm, Token)
                       done = 0
                 elif type == NONTERMFLAG:
                    # try to add each First entry for nonterminal
                    # to First entry for GoalNonterm
                    for FToken in kjSet.Neighbors( First, Token ):
                       if not kjSet.HasArc(First, GoalNonterm, FToken):
                          kjSet.AddArc( First, GoalNonterm, FToken)
                          done = 0
                    # does this nonterminal have a known e production?
                    if kjSet.HasArc( First, Token, NULLTOKEN ):
                       # if so, process next token in rule
                       Processindex = 1
                 else:
                    raise TokenError, "unknown token type in rule body"
              #endif
              Bodyindex = Bodyindex + 1
           #endwhile Processindex
       #endfor R in self.Rules
     #endwhile not done
     self.First = First
  #enddef CompFirst 

  # computing the Follow set for the ruleset
  # the good news: I think it's correct.
  # the bad news: It's slower than it needs to be for epsilon cases.
  def CompFollow(self):
     Follow = kjSet.NewDG( [] )

     # put end marker on follow of start nonterminal
     kjSet.AddArc(Follow, self.StartNonterm, kjParser.ENDOFFILETOKEN)

     # now compute other follows using the rules;
     # repeat the loop until no change to Follow.
     done = 0
     while not done:
       done = 1 # assume done unless Follow changes
       for R in self.Rules:
          #print R
          # work backwards in the rule body to
          # avoid retesting for epsilon nonterminals
          Bodylength = len(R.Body)
          EpsilonTail = 1 # the tail of rule may expand to null
          BodyIndex = Bodylength - 1
          Last = 1 # loop starts at the last
          from types import TupleType
          while BodyIndex >= 0:
             Token = R.Body[BodyIndex]
             (Ttype,Tname) = Token
             if Ttype in (KEYFLAG,TERMFLAG):
                # keywords etc cancel epsilon tail, otherwise ignore
                EpsilonTail = 0
             elif Ttype == NONTERMFLAG:
                # if the tail expands to epsilon, map
                # follow for the goal nonterminal to this token
                # and also follow for the tail nonterms
                if EpsilonTail:
                   # add follow for goal
                   for FToken in kjSet.Neighbors(Follow,R.Nonterm):
                      if not kjSet.HasArc(Follow,Token,FToken):
                         kjSet.AddArc(Follow,Token,FToken)
                         #if type(FToken[0])==TupleType:
                         #   raise ValueError, "bad FToken"+`FToken`
                         #print "new", Token, FToken
                         done = 0 # follow changed, loop again
                   # add follow for tail members
                   #for Index2 in range(BodyIndex+1, Bodylength):
                   #   TailToken = R.Body[Index2]
                   #   for FToken in kjSet.Neighbors(Follow,TailToken):
                   #       if not kjSet.HasArc(Follow,Token,FToken):
                   #          kjSet.AddArc(Follow,Token,FToken)
                   #          done = 0
                #endif EpsilonTail

                # if we are not at the end use First set for next token
                if not Last:
                   NextToken = R.Body[BodyIndex+1]
                   (NTtype, NTname) = NextToken
                   if NTtype in (KEYFLAG,TERMFLAG):
                      if not kjSet.HasArc(Follow,Token,NextToken):
                         kjSet.AddArc(Follow,Token,NextToken)
                         #print "next", Token, NextToken
                         done = 0
                   elif NTtype == NONTERMFLAG:
                      for FToken in kjSet.Neighbors(self.First, NextToken):
                         if FToken != NULLTOKEN:
                            if not kjSet.HasArc(Follow,Token,FToken):
                               kjSet.AddArc(Follow,Token,FToken)
                               #print "neighbor", Token, FToken
                               done = 0
                         else:
                            # next token expands to epsilon:
                            # add its follow, unless already done above
                            #if not EpsilonTail:
                            for FToken in kjSet.Neighbors(Follow,NextToken):
                                if not kjSet.HasArc(Follow,Token,FToken):
                                   kjSet.AddArc(Follow,Token,FToken)
                                   #print "epsilon", Token, FToken
                                   done = 0
                   else:
                     raise TokenError, "unknown token type in rule body"
                #endif not Last

                # finally, check whether next iteration has epsilon tail
                if not kjSet.HasArc(self.First, Token, NULLTOKEN):
                   EpsilonTail = 0
             else:
                raise TokenError, "unknown token type in rule body"

             BodyIndex = BodyIndex - 1
             Last = 0 # no longer at the last token of the rule
          #endwhile
       #endfor
     #endwhile
     self.Follow = Follow
  #enddef CompFollow

  def DumpFirstFollow(self):
     First = self.First
     Follow = self.Follow
     print "First:"
     for key in First.keys():
         name = key[1]
         print name," :: ",
         for (flag2,name2) in First[key].keys():
             print name2,", ",
         print
     print "Follow:"
     for key in Follow.keys():
         name = key[1]
         print name," :: ",
         for (flag2,name2) in Follow[key].keys():
             print name2,", ",
         print

  # computing the "first" of the tail of a rule followed by an
  #  optional terminal
  # doesn't include NULLTOKEN
  # requires self.First to be computed
  #
  def FirstOfTail(self, Rule, TailIndex, Token=None):
     Result = kjSet.NewSet( [] )
     # go through all tokens in rule tail so long as there is a
     #  null derivation for the remainder
     Nullprefix = 1
     BodyLength = len(Rule.Body)
     ThisIndex = TailIndex
     while Nullprefix and ThisIndex < BodyLength:
        RToken = Rule.Body[ThisIndex]
        (RTtype, RTname) = RToken
        if RTtype == NONTERMFLAG:
           for FToken in kjSet.Neighbors(self.First, RToken):
               if FToken != NULLTOKEN:
                  kjSet.addMember(FToken, Result)
           #endfor
           # check whether this symbol might have a null production
           if not kjSet.HasArc(self.First, RToken, NULLTOKEN):
              Nullprefix = 0
        elif RTtype in [KEYFLAG, TERMFLAG]:
           kjSet.addMember(RToken, Result)
           Nullprefix = 0
        else:
           raise TokenError, "unknown token type in rule body"
        ThisIndex = ThisIndex + 1
     #endwhile
     # add the optional token if given and Nullprefix still set
     if Nullprefix and Token != None:
        kjSet.addMember(Token, Result)
     return Result
  #enddef FirstOfTail

  # compute an SLR NFA for the ruleset with states for each SLR "item"
  # and transitions, eg:
  #     X > .AB
  #   on A maps to X > A.B
  #   on epsilon maps to A > .ZC
  #                  and A > .WK
  # an item is a pair (rulenumber, bodyposition)
  # where body position 0 is interpreted to point before the
  # beginning of the body.
  #
  # SLR = "simple LR" in Aho+Ullman terminology
  #
  def CompSLRNFA(self):
     NFA = CFSMachine(self.StartNonterm)
     Nrules = len(self.Rules)
     itemStateMap = {}
     for Ruleindex in range(0,Nrules):
        Rule = self.Rules[Ruleindex]
        # make an item for each "dot" position in the body
        for DotPos in range(0, len(Rule.Body) + 1):
           item = (Ruleindex, DotPos)
           itemState = NFA.NewState(TRANSFLAG, [item])
           itemStateMap[item] = itemState
        #endfor DotPos
     #endfor Ruleindex

     # now that the states are initialized
     # compute transitions except for the last item of a rule
     # (which has none)
     for Ruleindex in range(0,Nrules):
        Rule = self.Rules[Ruleindex]
        for DotPos in range(0, len(Rule.Body)):
           item = (Ruleindex, DotPos)
           CurrentToken = Rule.Body[DotPos]
           ThisState = itemStateMap[item]
           NextState = itemStateMap[ (Ruleindex, DotPos + 1) ]
           NFA.SetMap( ThisState, CurrentToken, NextState  )
           # if the current token is a nonterminal
           # ad epsilon transitions to first item for any
           # rule that derives this nonterminal
           (CTtype, CTname) = CurrentToken
           if CTtype == NONTERMFLAG:
              for Rule2index in range(0,Nrules):
                 Rule2 = self.Rules[Rule2index]
                 Head = Rule2.Nonterm
                 if Head == CurrentToken:
                    NextState = itemStateMap[( Rule2index, 0 )]
                    NFA.SetMap( ThisState, NULLTOKEN, NextState )
              #endfor Rule2index
           #endif CTtype == NONTERMFLAG
        #endfor DotPos
     #endfor Ruleindex

     # must handle the initial state properly here!
     # Make a dummy state with e-transitions to all first items
     # for rules that derive the initial nonterminal
     ThisState = NFA.initial_state
     GoodStartingPlace = None
     for Ruleindex in range(0,Nrules):
        Rule = self.Rules[Ruleindex]
        Head = Rule.Nonterm
        if Head == self.StartNonterm:
           GoodStartingPlace= (Ruleindex, 0)
           NextState = itemStateMap[ GoodStartingPlace ]
           NFA.SetMap( ThisState, NULLTOKEN, NextState )
     # fix the NFA.States entry
     if GoodStartingPlace == None:
        raise NotSLRError, "No derivation for root nonterminal."
     NFA.States[ NFA.initial_state ] = \
          [ 'transient', GoodStartingPlace ]

     self.SLRNFA = NFA
  #enddef CompSLRNFA

  # dump an item
  def ItemDump(self, item):
     (ruleindex, position) = item
     Rule = self.Rules[ruleindex]
     print Rule.Nonterm[1],' >> ',
     for bindex in range(0, len(Rule.Body)):
        if position == bindex:
           print " (*) ",
        print Rule.Body[bindex][1],
     if position == len(Rule.Body):
        print " (*) "
     else:
        print

  # utility function -- returns true if an item is a final item
  def SLRItemIsFinal(self, item):
     (ruleindex, position) = item
     Rule = self.Rules[ruleindex]
     if position == len(Rule.Body):
        return 1
     else:
        return 0

  # dump the NFA
  def DumpSLRNFA(self):
     NFA = self.SLRNFA
     print "root: ", NFA.root_nonTerminal
     for key in NFA.StateTokenMap.keys():
        map = NFA.StateTokenMap[key]
        (fromstate, token) = key
        fromitem = NFA.States[ fromstate ][1]
        self.ItemDump(fromitem)
        print " on ", token[1], " maps "
        for Tostate in map:
           Toitem = NFA.States[Tostate][1]
           print "    ",
           self.ItemDump(Toitem)

  # compute DFA for ruleset by computing the E-closure of the
  # NFA
  def CompDFA(self):
     self.DFA = self.SLRNFA.Eclosure(NULLTOKEN)

  def DumpDFAsets(self):
     DFA = self.DFA
     print "root: ", DFA.root_nonTerminal
     for State in range(1, len(DFA.States) ):
        self.DumpItemSet(State)

  def DumpItemSet(self,State):
     DFA = self.DFA
     NFA = self.SLRNFA
     print
     print "STATE ", State, " *******"
     fromNFAindices = kjSet.get_elts(DFA.States[State][1])
     for NFAindex in fromNFAindices:
        item = NFA.States[NFAindex][1]
        print "  ", NFAindex, ": ",
        self.ItemDump(item)

  # this function completes the computation of an SLR DFA
  # by adding reduction states for each DFA state S containing
  # item   H > B.
  # which reduces rule H > B
  # for each token T in Follow of H.
  # if S already has a transition for T then there is a conflict!
  #
  # assumes DFA and SLRNFA and Follow have been computed.
  #
  def SLRFixDFA(self):
     DFA = self.DFA
     NFA = self.SLRNFA
     # look through the states (except 0=success) of the DFA
     # initially don't add any new states, just record
     # actions to be done
     #   uses convention that 0 is successful final state

     # ToDo is a dictionary which maps 
     #     (State, Token) to a item to reduce
     ToDo = {}
     Error = None
     for State in range(1, len(DFA.States) ):
        # look for a final item for a rule in this state
        fromNFAindices = kjSet.get_elts(DFA.States[State][1])
        for NFAindex in fromNFAindices:
           item = NFA.States[NFAindex][1]
           # if the item is final remember to do the reductions...
           if self.SLRItemIsFinal(item):
              (ruleindex, position) = item
              Rule = self.Rules[ruleindex]
              Head = Rule.Nonterm
              Following = kjSet.Neighbors( self.Follow, Head )
              for Token in Following:
                 key = (State, Token)
                 if not ToDo.has_key(key):
                    ToDo[ key ] = item
                 else:
                    # it might be okay if the items are identical?
                    item2 = ToDo[key]
                    if item != item2:
                       print "reduce/reduce conflict on ",key
                       self.ItemDump(item)
                       self.ItemDump(item2)
                    Error = " apparent reduce/reduce conflict"
                 #endif
              #endfor
           #endif
        #endfor NFAindex
     #endfor State

     # for each (State,Token) pair which indicates a reduction
     # record the reduction UNLESS the map is already set for the pair
     for key in ToDo.keys():
        (State,Token) = key
        item = ToDo[key]
        (rulenum, dotpos) = item
        ExistingMap = DFA.map( State, Token )
        if ExistingMap[0] == NOMATCHFLAG:
           DFA.SetReduction( State, Token, rulenum )
        else:
           print "apparent shift/reduce conflict"
           print "reduction: ", key, ": "
           self.ItemDump(item)
           print "existing map ", ExistingMap
           Error = " apparent shift/reduce conflict"
     #endfor
     if Error and ABORTONERROR:
        raise NotSLRError, Error
  #enddef SLRfixDFA()

  # do complete SLR DFA creation starting after initialization
  def DoSLRGeneration(self):
     self.CompFirst()
     self.CompFollow()
     self.CompSLRNFA()
     self.CompDFA()
     self.SLRFixDFA()

#endclass ruleset


################ the following are interpretation functions
################ used by RULEGRAM meta grammar
# some constants used here
COMMENTFORM = "##.*\n"
RSKEY = "@R"
COLKEY = "::"
LTKEY = ">>"
IDNAME = "ident"
# an identifier in the meta grammar is any nonwhite string
# except the keywords @R :: >> or comment flag ##
IDFORM = "[^" + string.whitespace + "]+"

# for identifiers simply return the string
def IdentFun(string):
  return string

# RootReduction should receive list of form
#   [ nontermtoken, keyword COLKEY, RuleList ]
def RootReduction(list, ObjectGram):
  if len(list) != 3 or list[1] != COLKEY:
     raise FlowError, "unexpected metagrammar root reduction"
  return (list[0], list[2])

# NullRuleList should receive list of form
#   []
def NullRuleList(list, ObjectGram):
  if list != []:
     raise FlowError, "unexpected null RuleList form"
  return []

# FullRuleList should receive list of form
#   [ Rule, RuleList ]
def FullRuleList(list, ObjectGram):
  if type(list) != type([]) or len(list)!=2:
     raise FlowError, "unexpected full RuleList form"
  NewRule = list[0]
  OldRules = list[1]
  return [NewRule] + OldRules

# InterpRule should receive list of form
#   [keyword RSKEY, 
#    RuleNameStr, 
#    keyword COLKEY, 
#    Nontermtoken, 
#    keyword LTKEY, 
#    Bodylist]
#
def InterpRule(list, ObjectGram):
  # check keywords:
  if len(list) != 6 or \
     list[0] != RSKEY or \
     list[2] != COLKEY or \
     list[4] != LTKEY:
     raise FlowError, "unexpected meta rule reduction form"
  ruleName = list[1]
  ruleNonterm = list[3]
  ruleBody = list[5]
  # upcase the the representation of keywords if needed
  if not ObjectGram.LexD.isCaseSensitive():
     for i in range(0,len(ruleBody)):
        (flag, name) = ruleBody[i]
        if flag == KEYFLAG:
           ruleBody[i] = (KEYFLAG, string.upper(name))
        elif not flag in (TERMFLAG, NONTERMFLAG):
           raise FlowError, "unexpected rule body member"
  rule = kjParser.ParseRule( ruleNonterm, ruleBody )
  rule.Name = ruleName
  return rule

# InterpRuleName should receive
#    [ string ]
def InterpRuleName(list, ObjectGram):
  #print list
  # add error checking?
  return list[0]

# InterpNonTerm should receive
#    [ string ]  
def InterpNonTerm(list, ObjectGram):
  #print list
  if type(list)!=type([]) or len(list)!=1:
     raise FlowError, "unexpected rulename form"
  Name = list[0]
  # determine whether this is a valid nonterminal
  if not ObjectGram.NonTermDict.has_key(Name):
     #print Name
     raise TokenError, "LHS of Rule must be nonterminal: "+Name
  return ObjectGram.NonTermDict[Name]

# NullBody should receive []
def NullBody(list, ObjectGram):
  #print list
  if list != []:
     raise FlowError, "unexpected null Body form"
  return []

# FullBody should receive
#  [ string, Bodylist]
# must determine whether the string represents
# a keyword, a nonterminal, or a terminal of the object
# grammar.
# returns (KEYFLAG, string) (TERMFLAG, string) or
#         (NONTERMFLAG, string) respectively
#
def FullBody(list,ObjectGram):
  #print list
  if type(list)!=type([]) or len(list)!=2:
     raise FlowError, "unexpected body form"
  Name = list[0]
  # Does the Name rep a nonterm, keyword or term
  # of the object grammar (in that order).
  if ObjectGram.NonTermDict.has_key(Name):
     kind = NONTERMFLAG
  elif ObjectGram.LexD.keywordmap.has_key(Name):
     kind = KEYFLAG
  elif ObjectGram.TermDict.has_key(Name):
     kind = TERMFLAG
  else:
     raise TokenError, "Rule body contains unregistered string: "+Name
  restOfBody = list[1]
  return [(kind, Name)] + restOfBody

# function to generate a grammar for parsing grammar rules
#
def ruleGrammar():
   LexD = kjParser.LexDictionary()
   # use SQL/Ansi style comments
   LexD.comment( COMMENTFORM )
   # declare keywords
   RStart = LexD.keyword( RSKEY )
   TwoColons = LexD.keyword( COLKEY )
   LeadsTo = LexD.keyword( LTKEY )
   # declare terminals
   ident = LexD.terminal(IDNAME, IDFORM, IdentFun )
   # declare nonterminals
   Root = kjParser.nonterminal("Root")
   Rulelist = kjParser.nonterminal("RuleList")
   Rule = kjParser.nonterminal("Rule")
   RuleName = kjParser.nonterminal("RuleName")
   NonTerm = kjParser.nonterminal("NonTerm")
   Body = kjParser.nonterminal("Body")

   # declare rules
   #   Root >> NonTerm :: Rulelist
   InitRule = kjParser.ParseRule( Root, \
               [NonTerm, TwoColons, Rulelist], RootReduction )
   #   Rulelist >>
   RLNull = kjParser.ParseRule( Rulelist, [], NullRuleList)
   #   Rulelist >> Rule Rulelist
   RLFull = kjParser.ParseRule( Rulelist, [Rule,Rulelist], FullRuleList)
   #   Rule >> "@R :: NonTerm >> Body
   RuleR = kjParser.ParseRule( Rule, \
      [RStart, RuleName, TwoColons, NonTerm, LeadsTo, Body],\
      InterpRule)
   #   Rulename >> ident
   RuleNameR = kjParser.ParseRule( RuleName, [ident], InterpRuleName)
   #   NonTerm >> ident
   NonTermR = kjParser.ParseRule( NonTerm, [ident], InterpNonTerm)
   #   Body >>
   BodyNull = kjParser.ParseRule( Body, [], NullBody)
   #   Body >> ident Body
   BodyFull = kjParser.ParseRule( Body, [ident,Body], FullBody)

   # declare Rules list and Associated Name dictionary
   Rules = [RLNull, RLFull, RuleR, RuleNameR, NonTermR,\
                BodyNull, BodyFull, InitRule]
   RuleDict = \
    { "RLNull":0, "RLFull":1, "RuleR":2, "RuleNameR":3, \
      "NonTermR":4, "BodyNull":5, "BodyFull":6 , "InitRule":7 }
   # make the RuleSet and compute the associate DFA
   RuleSet = ruleset( Root, Rules )
   RuleSet.DoSLRGeneration()
   # construct the Grammar object
   Result = kjParser.Grammar( LexD, RuleSet.DFA, Rules, RuleDict )
   return Result
   
#enddef RuleGrammar()


# this is the rule grammar object for 
# parsing
RULEGRAM = ruleGrammar()

# a derived grammar class (object oriented programming is cool!)
# this is a compilable grammar for automatic parser generation.
#
class CGrammar(kjParser.Grammar):

   # initialization is handled by the base class

   # insert a white separated list of keywords into the LexD
   # THIS SHOULD CHECK FOR KEYWORD/NONTERMINAL/PUNCT NAME
   # COLLISIONS (BUT DOESN'T YET).
   def Keywords(self, Stringofkeys):
     keywordlist = string.split(Stringofkeys)
     for keyword in keywordlist:
        self.LexD.keyword( keyword )

   # insert a string of punctuations into the LexD
   def punct(self, Stringofpuncts):
     for p in Stringofpuncts:
        self.LexD.punctuation(p)

   # register a list of regular expression strings
   # to represent comments in LexD
   def comments(self, listOfCommentStrings):
     for str in listOfCommentStrings:
        self.LexD.comment(str)

   # register a white separated list of nonterminal strings
   def Nonterms(self, StringofNonterms):
     nonTermlist = string.split(StringofNonterms)
     for NonTerm in nonTermlist:
        self.NonTermDict[NonTerm] = kjParser.nonterminal(NonTerm)

   # initialize or add more rules to the RuleString
   def Declarerules(self, StringWithRules):
     self.RuleString = self.RuleString + "\n" + StringWithRules

   # The compilation function assumes
   #   NonTermDict
   #   RuleString
   #   LexD
   #   TermDict
   # have all been set up properly
   # (at least if the default MetaGrammar is used).
   # On successful completion it will set up
   #   DFA
   #   RuleL
   #   RuleNameToIndex
   def Compile(self, MetaGrammar=RULEGRAM):
     # the following should return a list of rules
     # with punctuations of self.LexD interpreted as trivial keywords
     #   keywords of seld.LexD interpreted as keywords
     # and nonterminals registered in NonTermDict interpreted as
     # nonterms.
     #  ParseResult should be of form ( (rootNT, RuleL), self )
     ParseResult = MetaGrammar.DoParse1( self.RuleString, self )
     (RootNonterm, Rulelist) = ParseResult

     # make a ruleset and compute its DFA
     RuleS = ruleset( RootNonterm, Rulelist )
     RuleS.DoSLRGeneration() 

     # make the rulename to index map to allow future bindings
     for i in range(0,len(Rulelist)):
        Rule = Rulelist[i]
        self.RuleNameToIndex[ Rule.Name ] = i

     # fill in the blanks
     self.DFA = RuleS.DFA
     self.RuleL = Rulelist

     # FOR DEBUG AND TESTING
     self.Ruleset = RuleS
     
     # DON'T clean up the grammar (misc structures are used)
     # in future bindings
   #enddef Compile


   # Write a reconstructable representation for this grammar
   # to a file
   #EXCEPT: 
   #   - rule associations to reduction functions
   #     will be lost (must be reset elsewhere)
   #   - terminals in the lexical dictionary
   #     will not be initialized
   #
   # IND is used for indentation, should be whitespace (add check!)
   #
   # FName if given will cause the reconstructed to be placed
   # inside a function `FName`+"()" returning the grammar object
   #
   # NOTE: this function violates information hiding principles;
   #  in particular it "knows" the guts of the FSM and LexD classes
   #
   def Reconstruct(self, VarName, Tofile, FName=None, indent=""):
      Reconstruction = codeReconstruct(VarName, Tofile, self, FName, indent)
      GrammarDumpSequence(Reconstruction)
   #enddef Reconstruct

   # marshalling of a grammar to a file
   def MarshalDump(self, Tofile):
      Reconstruction = marshalReconstruct(self, Tofile)
      GrammarDumpSequence(Reconstruction)

#endclass CGrammar

# general procedure for different types of archiving for grammars
def GrammarDumpSequence(ReconstructObj):
   # assume an initialized Reconstruct Object with appropriate grammar etc.
   # put the lexical part
   ReconstructObj.PutLex()
   # put the rules
   ReconstructObj.PutRules()
   # put transitions
   ReconstructObj.PutTransitions()
   # finish up
   ReconstructObj.Cleanup()

# function to create a "null CGrammar"
def NullCGrammar():
   return CGrammar(None,None,None,{})

# utility classes -- Grammar reconstruction objects
#  encapsulate the process of grammar archiving.
#
class Reconstruct:

   # this "virtual class" is only for common behaviors of subclasses.
   def MakeTokenArchives(self):
     # make a list of all tokens and
     # initialize token > int dictionary
     keys = self.Gram.DFA.StateTokenMap.keys()
     tokenToInt = {}
     tokenSet = kjSet.NewSet([])
     for k in keys:
         kjSet.addMember(k[1], tokenSet)
     tokens = kjSet.get_elts(tokenSet)
     for i in range(0,len(tokens)):
         tokenToInt[ tokens[i] ] = i

     self.keys = keys
     self.tokens = tokens # global sub
     self.tokInt = tokenToInt # global sub

# grammar reconstruction to a file
class codeReconstruct(Reconstruct):

   def __init__(self, VarName, Tofile, Grammar, FName=None, indent =""):
     # do global subs for each of these
     self.Var = VarName
     self.File = Tofile
     self.FName = FName
     self.Gram = Grammar
     
     # put the reconstruction in a function if FName is given
     if FName != None:
        Tofile.write("\n\n")
        Tofile.write(indent+"def "+FName+"():\n")
        IND = indent+"   "
     else:
        IND = indent
     self.I = IND # global sub!
     Tofile.write("\n\n")
     Tofile.write(IND+"# ******************************BEGIN RECONSTRUCTION\n")
     Tofile.write(IND+"# Python declaration of Grammar variable "+VarName+".\n")
     Tofile.write(IND+"# automatically generated by module "+PMODULE+".\n")
     Tofile.write(IND+"# Altering this sequence by hand will probably\n")
     Tofile.write(IND+"# leave it unusable.\n")
     Tofile.write(IND+"#\n")
     Tofile.write(IND+"import "+PMODULE+"\n\n")
     Tofile.write(IND+"# variable declaration:\n")
     Tofile.write(IND+VarName+"= "+PMODULE+".NullGrammar()\n\n")

     # make self.keys list of dfa keys,
     #      self.tokens list of grammar tokens,
     #      self.tokInt inverted dictionary for self.tokens
     self.MakeTokenArchives()

     Tofile.write("\n\n"+IND+"# case sensitivity behavior for keywords.\n")
     if self.Gram.LexD.isCaseSensitive():
        Tofile.write(IND+VarName+".SetCaseSensitivity(1)\n")
     else:
        Tofile.write(IND+VarName+".SetCaseSensitivity(0)\n")
   #enddef __init__

   def PutLex(self):
     IND = self.I
     Tofile = self.File
     VarName = self.Var
     LexD = self.Gram.LexD
     tokens = self.tokens

     Tofile.write("\n\n"+IND+"# declaration of lexical dictionary.\n")
     Tofile.write(IND+"# EXCEPT FOR TERMINALS\n")
     Tofile.write(IND+VarName+".LexD.punctuationlist = ")
     Tofile.write(`LexD.punctuationlist`+"\n")
     Tofile.write(IND+"# now comment patterns\n")
     for comment in LexD.commentstrings:
        Tofile.write(IND+VarName+".LexD.comment("+`comment`+")\n")
     Tofile.write(IND+"# now define tokens\n")
     for i in range(0,len(tokens)):
        tok = tokens[i]
        (kind, name) = tok
        if kind == TERMFLAG:
           # put warning at end!
           #  nonterminal not installed in lexical dictionary here!
           Tofile.write(IND+VarName+".IndexToToken["+`i`+"] = ")
           Tofile.write(PMODULE+".termrep("+`name`+")\n")           
        elif kind == KEYFLAG:
           Tofile.write(IND+VarName+".IndexToToken["+`i`+"] = ")
           Tofile.write(VarName+".LexD.keyword("+`name`+")\n")
        elif kind == NONTERMFLAG:
           Tofile.write(IND+VarName+".IndexToToken["+`i`+"] = ")
           Tofile.write(PMODULE+".nonterminal("+`name`+")\n")
        else:
           raise FlowError, "unknown token type"
   #enddef PutLex

   def PutRules(self):
     IND = self.I
     VarName = self.Var
     Rules = self.Gram.RuleL
     Tofile = self.File
     Root = self.Gram.DFA.root_nonTerminal
     Tofile.write("\n\n"+IND+"# declaration of rule list with names.\n")
     Tofile.write(IND+"# EXCEPT FOR INTERP FUNCTIONS\n")
     nrules = len(Rules)
     Tofile.write(IND+VarName+".RuleL = [None] * "+`nrules`+"\n")
     for i in range(0,nrules):
        # put warning at end:
        #  rule reduction function not initialized here!
        rule = Rules[i]
        name = rule.Name
        Tofile.write(IND+"rule = "+`rule`+"\n")
        Tofile.write(IND+"name = "+`name`+"\n")
        Tofile.write(IND+"rule.Name = name\n")
        Tofile.write(IND+VarName+".RuleL["+`i`+"] = rule\n")
        Tofile.write(IND+VarName+".RuleNameToIndex[name] = "+`i`+"\n")

     Tofile.write("\n\n"+IND+"# DFA root nonterminal.\n")
     Tofile.write(IND+VarName+".DFA.root_nonTerminal =")
     Tofile.write(`Root`+"\n")
   #enddef PutRules

   def PutTransitions(self):
     IND = self.I
     Tofile = self.File
     VarName = self.Var
     maxState = self.Gram.DFA.maxState
     tokenToInt = self.tokInt
     StateTokenMap = self.Gram.DFA.StateTokenMap
     keys = self.keys

     Tofile.write("\n\n"+IND+"# DFA state declarations.\n")
     for state in range(1, maxState+1):
        Tofile.write(IND+VarName+".DFA.States["+`state`+"] = ")
        Tofile.write('['+`TRANSFLAG`+']\n')
     Tofile.write(IND+VarName+".DFA.maxState = "+`maxState`+"\n")

     Tofile.write("\n\n"+IND+"# DFA transition declarations.\n")
     for key in keys:
        (fromState, TokenRep) = key
        TokenIndex = tokenToInt[TokenRep]
        TokenArg = VarName+".IndexToToken["+`TokenIndex`+"]"
        TMap = StateTokenMap[key]
        TMaptype = TMap[0][0]
        if TMaptype == REDUCEFLAG:
           # reduction
           rulenum = TMap[0][1]
           Args = "("+`fromState`+","+TokenArg+","+`rulenum`+")"
           Tofile.write(IND+VarName+".DFA.SetReduction"+Args+"\n")
        elif TMaptype == MOVETOFLAG:
           # MoveTo
           Args = "("+`fromState`+","+TokenArg+","+`TMap[0][1]`+")"
           Tofile.write(IND+VarName+".DFA.SetMap"+Args+"\n")
        else:
           raise FlowError, "unexpected else (2)"
   #enddef

   def Cleanup(self):
     Tofile = self.File
     RuleL = self.Gram.RuleL
     tokens = self.tokens
     VarName = self.Var
     IND = self.I
     FName = self.FName

     Tofile.write("\n\n"+IND+"# Clean up the grammar.\n")
     Tofile.write(IND+VarName+".CleanUp()\n")

     # if the Fname was given return the grammar as function result
     if FName != None:
        Tofile.write("\n\n"+IND+"# return the grammar.\n")
        Tofile.write(IND+"return "+VarName+"\n")

     Tofile.write("\n\n"+IND+"# WARNINGS ****************************** \n")
     Tofile.write(IND+"# You must bind the following rule names \n")
     Tofile.write(IND+"# to reduction interpretation functions \n")
     for R in RuleL:
        Tofile.write(IND+"# "+VarName+".Bind("+`R.Name`+", ??function??)\n")
     Tofile.write(IND+"#(last rule)\n")

     Tofile.write("\n\n"+IND+"# WARNINGS ****************************** \n")
     Tofile.write(IND+"# You must bind the following terminals \n")
     Tofile.write(IND+"# to regular expressions and interpretation functions \n")
     warningPrinted = 0
     for tok in tokens:
        (kind, name) = tok
        if kind == TERMFLAG and tok != ENDOFFILETOKEN:
           Tofile.write(IND+"# "+VarName+\
             ".Addterm("+`name`+", ??regularExp??, ??function??)\n")
           warningPrinted = 1
     if not warningPrinted:
        Tofile.write(IND+"#  ***NONE** \n")
     Tofile.write(IND+"#(last terminal)\n")
     Tofile.write(IND+"# ******************************END RECONSTRUCTION\n")
   #enddef
#endclass

# reconstruction using marshalling to a file
#  encodes internal structures for grammar using marshal-able
#  objects.  Final marshalling to the file is done at CleanUp()
#  storing one big tuple.
#
class marshalReconstruct(Reconstruct):

   def __init__(self, Grammar, Tofile):
     self.Gram = Grammar
     self.File = Tofile
     # should archive self.tokens structure
     self.MakeTokenArchives()
     # archive this
     self.CaseSensitivity = Grammar.LexD.isCaseSensitive()

   def PutLex(self):
     LexD = self.Gram.LexD
     # archive these
     self.punct = LexD.punctuationlist
     self.comments = LexD.commentstrings

   def PutRules(self):
     # archive this
     self.Root = self.Gram.DFA.root_nonTerminal
     # make a list of tuples that can be used with
     # rule = apply(ParseRule, tuple[1])
     # rule.Name = tuple[0]
     Rules = self.Gram.RuleL
     nrules = len(Rules)
     RuleTuples = [None] * nrules
     for i in range(nrules):
        rule = Rules[i]
        RuleTuples[i] = (rule.Name, rule.components())
     #archive this
     self.RuleTups = RuleTuples

   def PutTransitions(self):
     keys = self.keys
     tokenToInt = self.tokInt
     StateTokenMap = self.Gram.DFA.StateTokenMap
     
     # archive this
     self.MaxStates = self.Gram.DFA.maxState

     # create two lists, 
     #   one for reductions with contents (fromState, tokennumber, rulenum)
     #   one for movetos with contents (fromstate, tokennumber, tostate)
     #      (note: token number not token itself to allow sharing)
     # to allow arbitrary growing, first use dicts:
     reductDict = {}
     nreducts = 0
     moveToDict = {}
     nmoveTos = 0
     for key in self.keys:
        (fromState, TokenRep) = key
        TokenIndex  = tokenToInt[TokenRep]
        TMap = StateTokenMap[key]
        TMaptype = TMap[0][0]
        if TMaptype == REDUCEFLAG:
           rulenum = TMap[0][1]
           reductDict[nreducts] = (fromState, TokenIndex, rulenum)
           nreducts = nreducts + 1
        elif TMaptype == MOVETOFLAG:
           ToState = TMap[0][1]
           moveToDict[nmoveTos] = (fromState, TokenIndex, ToState)
           nmoveTos = nmoveTos + 1
        else:
           raise FlowError, "unexpected else"
     #endfor
     # translate dicts to lists
     reducts = [None] * nreducts
     for i in range(nreducts):
        reducts[i] = reductDict[i]
     moveTos = [None] * nmoveTos
     for i in range(nmoveTos):
        moveTos[i] = moveToDict[i]

     # archive these
     self.reducts = reducts
     self.moveTos = moveTos

   # this is the function that does the marshalling
   def Cleanup(self):
     import marshal
     # make the big list to marshal
     BigList = [None] * 9
     BigList[0] = self.tokens
     BigList[1] = self.punct
     BigList[2] = self.comments
     BigList[3] = self.RuleTups
     BigList[4] = self.MaxStates
     BigList[5] = self.reducts
     BigList[6] = self.moveTos
     BigList[7] = self.Root
     BigList[8] = self.CaseSensitivity
     # dump the big list to the file
     marshal.dump( BigList, self.File )

#end class

#######################testing stuff
if RUNTESTS:
  def echo(x): return x
  
  # simple grammar stolen from a text
  LD0 = kjParser.LexDictionary()
  id = LD0.terminal("id","id",echo)
  plus = LD0.punctuation("+")
  star = LD0.punctuation("*")
  oppar = LD0.punctuation("(")
  clpar = LD0.punctuation(")")
  equals = LD0.punctuation("=")
  E = kjParser.nonterminal("E")
  T = kjParser.nonterminal("T")
  Tp = kjParser.nonterminal("Tp")
  Ep = kjParser.nonterminal("Ep")
  F = kjParser.nonterminal("F")
  rule1 = kjParser.ParseRule( E, [ T, Ep ] )
  rule2 = kjParser.ParseRule( Ep, [ plus, T, Ep ] )
  rule3 = kjParser.ParseRule( Ep, [ ] )
  rule4 = kjParser.ParseRule( T, [ F, Tp ] )
  rule5 = kjParser.ParseRule( Tp, [ star, F, Tp ] )
  rule6 = kjParser.ParseRule( Tp, [ ] )
  rule7 = kjParser.ParseRule( F, [ oppar, E, clpar ] )
  rule8 = kjParser.ParseRule( F, [ id ] )
  
  rl0 = [ rule1, rule2, rule3, rule4, rule5, rule6, rule7,rule8]
  rs0 = ruleset(E, rl0)
  rs0.CompFirst()
  Firstpairs = kjSet.GetPairs(rs0.First)
  rs0.CompFollow()
  Followpairs = kjSet.GetPairs(rs0.Follow)
  rs0.CompSLRNFA()
  NFA0 = rs0.SLRNFA
  rs0.CompDFA()
  rs0.SLRFixDFA()
  DFA0 = rs0.DFA
  
  class dummy: pass
  ttt0 = dummy()
  
  def TESTDFA( STRING , ttt, DFA, Rulelist, DOREDUCTIONS = 1):
    ttt.STRING = STRING
    #ttt.List = kjParser.LexList(LD0, ttt.STRING)
    ttt.Stream = kjParser.LexStringWalker( ttt.STRING, LD0 )
    ttt.Stack = {-1:0}# Walkers.SimpleStack()
    ttt.ParseObj = kjParser.ParserObj( Rulelist, \
                       ttt.Stream, DFA, ttt.Stack,DOREDUCTIONS)
    ttt.RESULT = ttt.ParseObj.GO()
    #ttt.Stack.Dump(10)
    return ttt.RESULT
  
  def TESTDFA0( STRING , DOREDUCTIONS = 1):
    return TESTDFA( STRING, ttt0, DFA0, rl0, DOREDUCTIONS )
  
  TESTDFA0( " id + id * id ")
  
  # an even simpler grammar
  S = kjParser.nonterminal("S")
  M = kjParser.nonterminal("M")
  A = kjParser.nonterminal("A")
  rr1 = kjParser.ParseRule( S, [M] )
  #rr2 = kjParser.ParseRule( A, [A, plus, M])
  #rr3 = kjParser.ParseRule( A, [M], echo)
  #rr4 = kjParser.ParseRule( M, [M, star, M])
  rr5 = kjParser.ParseRule( M, [oppar, M, clpar])
  rr6 = kjParser.ParseRule( M, [id])
  rl1 = [rr1,rr5,rr6]
  rs1 = ruleset(S, rl1)
  rs1.CompFirst()
  rs1.CompFollow()
  rs1.CompSLRNFA()
  rs1.CompDFA()
  rs1.SLRFixDFA()
  DFA1 = rs1.DFA
  
  ttt1=dummy()
  
  def TESTDFA1( STRING , DOREDUCTIONS = 1):
    return TESTDFA( STRING, ttt1, DFA1, rl1, DOREDUCTIONS )
  
  X = kjParser.nonterminal("X")
  Y = kjParser.nonterminal("Y")
  RX = kjParser.ParseRule( X, [ oppar, Y, clpar ] )
  RY = kjParser.ParseRule( Y, [] )
  rl2 = [RX,RY]
  rs2 = ruleset(X, rl2)
  rs2.CompFirst()
  rs2.CompFollow()
  rs2.CompSLRNFA()
  rs2.CompDFA()
  rs2.SLRFixDFA()
  DFA2 = rs2.DFA
  
  ttt2 = dummy()
  def TESTDFA2( STRING, DOREDUCTIONS = 1):
     return TESTDFA( STRING, ttt2, DFA2, rl2, DOREDUCTIONS )
  
  # the following grammar should fail to be slr
  # (Aho,Ullman p. 213)
  
  S = kjParser.nonterminal("S")
  L = kjParser.nonterminal("L")
  R = kjParser.nonterminal("R")
  RS1 = kjParser.ParseRule( S, [L, equals, R] )
  RS2 = kjParser.ParseRule( S, [R], echo )
  RL1 = kjParser.ParseRule( L, [star, R])
  RL2 = kjParser.ParseRule( L, [id])
  RR1 = kjParser.ParseRule( R, [L] )
  rs3 = ruleset(S, [RS1,RS2,RL1,RL2,RR1])
  rs3.CompFirst()
  rs3.CompFollow()
  rs3.CompSLRNFA()
  rs3.CompDFA()
  #rs3.SLRFixDFA() # should fail and does.

  # testing RULEGRAM
  ObjG = NullCGrammar()
  ObjG.Addterm("id","id",echo)
  ObjG.Nonterms("T E Ep F Tp")
  ObjG.Keywords("begin end")
  ObjG.punct("+*()")
  ObjG.comments(["--.*\n"])
  # PROBLEM WITH COMMENTS???
  Rulestr = """
    ## what a silly grammar!
    T ::
    @R One :: T >> begin E end
    @R Three :: E >>
    @R Two :: E >> E + T
    @R Four :: E >> ( T )
    """
  RL = RULEGRAM.DoParse1( Rulestr, ObjG )
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.