small.py :  » Network » NetworkX » networkx-1.1 » networkx » generators » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Network » NetworkX 
NetworkX » networkx 1.1 » networkx » generators » small.py
"""
Various small and named graphs, together with some compact generators.

"""
__author__ ="""Aric Hagberg (hagberg@lanl.gov)\nPieter Swart (swart@lanl.gov)"""
#    Copyright (C) 2004-2008 by 
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.

__all__ = ['make_small_graph',
           'LCF_graph',
           'bull_graph',
           'chvatal_graph',
           'cubical_graph',
           'desargues_graph',
           'diamond_graph',
           'dodecahedral_graph',
           'frucht_graph',
           'heawood_graph',
           'house_graph',
           'house_x_graph',
           'icosahedral_graph',
           'krackhardt_kite_graph',
           'moebius_kantor_graph',
           'octahedral_graph',
           'pappus_graph',
           'petersen_graph',
           'sedgewick_maze_graph',
           'tetrahedral_graph',
           'truncated_cube_graph',
           'truncated_tetrahedron_graph',
           'tutte_graph']

import networkx as nx
from networkx.generators.classic import empty_graph,cycle_graph,path_graph,complete_graph
from networkx.exception import NetworkXError

#------------------------------------------------------------------------------
#   Tools for creating small graphs
#------------------------------------------------------------------------------
def make_small_undirected_graph(graph_description, create_using=None):
    """
    Return a small undirected graph described by graph_description.

    See make_small_graph.
    """
    if create_using is not None and create_using.is_directed():
        raise NetworkXError("Directed Graph not supported")
    return make_small_graph(graph_description, create_using)

def make_small_graph(graph_description, create_using=None):
    """
    Return the small graph described by graph_description.

    graph_description is a list of the form [ltype,name,n,xlist]

    Here ltype is one of "adjacencylist" or "edgelist",
    name is the name of the graph and n the number of nodes.
    This constructs a graph of n nodes with integer labels 0,..,n-1.
    
    If ltype="adjacencylist"  then xlist is an adjacency list
    with exactly n entries, in with the j'th entry (which can be empty)
    specifies the nodes connected to vertex j.
    e.g. the "square" graph C_4 can be obtained by

    >>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[1,3],[2,4],[1,3]]])

    or, since we do not need to add edges twice,
    
    >>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[3],[4],[]]])
    
    If ltype="edgelist" then xlist is an edge list 
    written as [[v1,w2],[v2,w2],...,[vk,wk]],
    where vj and wj integers in the range 1,..,n
    e.g. the "square" graph C_4 can be obtained by
 
    >>> G=nx.make_small_graph(["edgelist","C_4",4,[[1,2],[3,4],[2,3],[4,1]]])

    Use the create_using argument to choose the graph class/type. 
    """
    ltype=graph_description[0]
    name=graph_description[1]
    n=graph_description[2]

    G=empty_graph(n, create_using)
    nodes=G.nodes()

    if ltype=="adjacencylist":
        adjlist=graph_description[3]
        if len(adjlist) != n:
            raise NetworkXError,"invalid graph_description"
        G.add_edges_from([(u-1,v) for v in nodes for u in adjlist[v]])
    elif ltype=="edgelist":
        edgelist=graph_description[3]
        for e in edgelist:
            v1=e[0]-1
            v2=e[1]-1
            if v1<0 or v1>n-1 or v2<0 or v2>n-1:
                raise NetworkXError,"invalid graph_description"
            else:
                G.add_edge(v1,v2)
    G.name=name
    return G


def LCF_graph(n,shift_list,repeats,create_using=None):
    """
    Return the cubic graph specified in LCF notation.

    LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed
    notation used in the generation of various cubic Hamiltonian
    graphs of high symmetry. See, for example, dodecahedral_graph,
    desargues_graph, heawood_graph and pappus_graph below.
    
    n (number of nodes)
      The starting graph is the n-cycle with nodes 0,...,n-1.
      (The null graph is returned if n < 0.)

    shift_list = [s1,s2,..,sk], a list of integer shifts mod n,

    repeats
      integer specifying the number of times that shifts in shift_list
      are successively applied to each v_current in the n-cycle
      to generate an edge between v_current and v_current+shift mod n.

    For v1 cycling through the n-cycle a total of k*repeats
    with shift cycling through shiftlist repeats times connect
    v1 with v1+shift mod n
          
    The utility graph K_{3,3}

    >>> G=nx.LCF_graph(6,[3,-3],3)
    
    The Heawood graph

    >>> G=nx.LCF_graph(14,[5,-5],7)

    See http://mathworld.wolfram.com/LCFNotation.html for a description
    and references.
    
    """
    if create_using is not None and create_using.is_directed():
        raise NetworkXError("Directed Graph not supported")

    if n <= 0:
        return empty_graph(0, create_using)

    # start with the n-cycle
    G=cycle_graph(n, create_using)
    G.name="LCF_graph"
    nodes=G.nodes()

    n_extra_edges=repeats*len(shift_list)    
    # edges are added n_extra_edges times
    # (not all of these need be new)
    if n_extra_edges < 1:
        return G

    for i in range(n_extra_edges):
        shift=shift_list[i%len(shift_list)] #cycle through shift_list
        v1=nodes[i%n]                    # cycle repeatedly through nodes
        v2=nodes[(i + shift)%n]
        G.add_edge(v1, v2)
    return G


#-------------------------------------------------------------------------------
#   Various small and named graphs
#-------------------------------------------------------------------------------

def bull_graph(create_using=None):
    """Return the Bull graph. """
    description=[
        "adjacencylist",
        "Bull Graph",
        5,
        [[2,3],[1,3,4],[1,2,5],[2],[3]]
        ]
    G=make_small_undirected_graph(description, create_using)
    return G

def chvatal_graph(create_using=None):
    """Return the Chvatal graph."""
    description=[
        "adjacencylist",
        "Chvatal Graph",
        12,
        [[2,5,7,10],[3,6,8],[4,7,9],[5,8,10],
         [6,9],[11,12],[11,12],[9,12],
         [11],[11,12],[],[]]
        ]
    G=make_small_undirected_graph(description, create_using)
    return G

def cubical_graph(create_using=None):
    """Return the 3-regular Platonic Cubical graph."""
    description=[
        "adjacencylist",
        "Platonic Cubical Graph",
        8,
        [[2,4,5],[1,3,8],[2,4,7],[1,3,6],
         [1,6,8],[4,5,7],[3,6,8],[2,5,7]]
        ]
    G=make_small_undirected_graph(description, create_using)
    return G

def desargues_graph(create_using=None):
    """ Return the Desargues graph."""
    G=LCF_graph(20, [5,-5,9,-9], 5, create_using)
    G.name="Desargues Graph"
    return G

def diamond_graph(create_using=None):
    """Return the Diamond graph. """
    description=[
        "adjacencylist",
        "Diamond Graph",
        4,
        [[2,3],[1,3,4],[1,2,4],[2,3]]
        ]
    G=make_small_undirected_graph(description, create_using)
    return G

def dodecahedral_graph(create_using=None):
    """ Return the Platonic Dodecahedral graph. """
    G=LCF_graph(20, [10,7,4,-4,-7,10,-4,7,-7,4], 2, create_using)
    G.name="Dodecahedral Graph"
    return G

def frucht_graph(create_using=None):
    """Return the Frucht Graph.

    The Frucht Graph is the smallest cubical graph whose
    automorphism group consists only of the identity element.

    """
    G=cycle_graph(7, create_using)
    G.add_edges_from([[0,7],[1,7],[2,8],[3,9],[4,9],[5,10],[6,10],
                [7,11],[8,11],[8,9],[10,11]])

    G.name="Frucht Graph"
    return G

def heawood_graph(create_using=None):
    """ Return the Heawood graph, a (3,6) cage. """
    G=LCF_graph(14, [5,-5], 7, create_using)
    G.name="Heawood Graph"
    return G

def house_graph(create_using=None):
    """Return the House graph (square with triangle on top)."""
    description=[
        "adjacencylist",
        "House Graph",
        5,
        [[2,3],[1,4],[1,4,5],[2,3,5],[3,4]]
        ]
    G=make_small_undirected_graph(description, create_using)
    return G

def house_x_graph(create_using=None):
    """Return the House graph with a cross inside the house square."""
    description=[
        "adjacencylist",
        "House-with-X-inside Graph",
        5,
        [[2,3,4],[1,3,4],[1,2,4,5],[1,2,3,5],[3,4]]
        ]
    G=make_small_undirected_graph(description, create_using)
    return G

def icosahedral_graph(create_using=None):
    """Return the Platonic Icosahedral graph."""
    description=[
        "adjacencylist",
        "Platonic Icosahedral Graph",
        12,
        [[2,6,8,9,12],[3,6,7,9],[4,7,9,10],[5,7,10,11],
         [6,7,11,12],[7,12],[],[9,10,11,12],
         [10],[11],[12],[]]
        ]
    G=make_small_undirected_graph(description, create_using)
    return G
    

def krackhardt_kite_graph(create_using=None):
    """
    Return the Krackhardt Kite Social Network.
 
    A 10 actor social network introduced by David Krackhardt
    to illustrate: degree, betweenness, centrality, closeness, etc. 
    The traditional labeling is:
    Andre=1, Beverley=2, Carol=3, Diane=4,
    Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9, Jane=10.
    
    """
    description=[
        "adjacencylist",
        "Krackhardt Kite Social Network",
        10,
        [[2,3,4,6],[1,4,5,7],[1,4,6],[1,2,3,5,6,7],[2,4,7],
         [1,3,4,7,8],[2,4,5,6,8],[6,7,9],[8,10],[9]]
         ]
    G=make_small_undirected_graph(description, create_using)
    return G

def moebius_kantor_graph(create_using=None):
    """Return the Moebius-Kantor graph."""
    G=LCF_graph(16, [5,-5], 8, create_using)
    G.name="Moebius-Kantor Graph"
    return G    

def octahedral_graph(create_using=None):
    """Return the Platonic Octahedral graph."""
    description=[
        "adjacencylist",
        "Platonic Octahedral Graph",
        6,
        [[2,3,4,5],[3,4,6],[5,6],[5,6],[6],[]]
        ]
    G=make_small_undirected_graph(description, create_using)
    return G
    
def pappus_graph():
    """ Return the Pappus graph."""
    G=LCF_graph(18,[5,7,-7,7,-7,-5],3)
    G.name="Pappus Graph"
    return G

def petersen_graph(create_using=None):
    """Return the Petersen graph."""
    description=[
        "adjacencylist",
        "Petersen Graph",
        10,
        [[2,5,6],[1,3,7],[2,4,8],[3,5,9],[4,1,10],[1,8,9],[2,9,10],
         [3,6,10],[4,6,7],[5,7,8]]
        ]
    G=make_small_undirected_graph(description, create_using)
    return G


def sedgewick_maze_graph(create_using=None):
    """
    Return a small maze with a cycle.

    This is the maze used in Sedgewick,3rd Edition, Part 5, Graph
    Algorithms, Chapter 18, e.g. Figure 18.2 and following.
    Nodes are numbered 0,..,7
    """ 
    G=empty_graph(0, create_using)
    G.add_nodes_from(range(8))
    G.add_edges_from([[0,2],[0,7],[0,5]])
    G.add_edges_from([[1,7],[2,6]])
    G.add_edges_from([[3,4],[3,5]])
    G.add_edges_from([[4,5],[4,7],[4,6]])
    G.name="Sedgewick Maze"
    return G

def tetrahedral_graph(create_using=None):
    """ Return the 3-regular Platonic Tetrahedral graph."""
    G=complete_graph(4, create_using)
    G.name="Platonic Tetrahedral graph"
    return G

def truncated_cube_graph(create_using=None):
    """Return the skeleton of the truncated cube."""
    description=[
        "adjacencylist",
        "Truncated Cube Graph",
        24,
        [[2,3,5],[12,15],[4,5],[7,9],
         [6],[17,19],[8,9],[11,13],
         [10],[18,21],[12,13],[15],
         [14],[22,23],[16],[20,24],
         [18,19],[21],[20],[24],
         [22],[23],[24],[]]
        ]
    G=make_small_undirected_graph(description, create_using)
    return G

def truncated_tetrahedron_graph(create_using=None):
    """Return the skeleton of the truncated Platonic tetrahedron."""
    G=path_graph(12, create_using)
#    G.add_edges_from([(1,3),(1,10),(2,7),(4,12),(5,12),(6,8),(9,11)])
    G.add_edges_from([(0,2),(0,9),(1,6),(3,11),(4,11),(5,7),(8,10)])
    G.name="Truncated Tetrahedron Graph"
    return G

def tutte_graph(create_using=None):
    """Return the Tutte graph."""
    description=[
        "adjacencylist",
        "Tutte's Graph",
        46,
        [[2,3,4],[5,27],[11,12],[19,20],[6,34],
         [7,30],[8,28],[9,15],[10,39],[11,38],
         [40],[13,40],[14,36],[15,16],[35],
         [17,23],[18,45],[19,44],[46],[21,46],
         [22,42],[23,24],[41],[25,28],[26,33],
         [27,32],[34],[29],[30,33],[31],
         [32,34],[33],[],[],[36,39],
         [37],[38,40],[39],[],[],
         [42,45],[43],[44,46],[45],[],[]]
        ]
    G=make_small_undirected_graph(description, create_using)
    return G

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.