test_operators.py :  » Network » NetworkX » networkx-1.1 » networkx » algorithms » tests » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Network » NetworkX 
NetworkX » networkx 1.1 » networkx » algorithms » tests » test_operators.py

import os, tempfile
from nose import SkipTest
from nose.tools import assert_raises,assert_true,assert_false,assert_equal

import networkx as nx
from networkx import *


def test_union_attributes():
    g = nx.Graph()
    g.add_node(0, x=4)
    g.add_node(1, x=5)
    g.add_edge(0, 1, size=5)
    g.graph['name'] = 'g'

    h = g.copy()
    h.graph['name'] = 'h'
    h.graph['attr'] = 'attr'
    h.node[0]['x'] = 7

    gh = nx.union(g, h, rename=('g', 'h'))
    assert_equal( set(gh.nodes()) , set(['h0', 'h1', 'g0', 'g1']) )
    for n in gh:
        graph, node = n
        assert_equal( gh.node[n], eval(graph).node[int(node)] )

    assert_equal(gh.graph['attr'],'attr')
    assert_equal(gh.graph['name'],'g') # g graph attributes take precendent

def test_intersection():
    G=nx.Graph()
    H=nx.Graph()
    G.add_nodes_from([1,2,3,4])
    G.add_edge(1,2)
    G.add_edge(2,3)
    H.add_nodes_from([1,2,3,4])
    H.add_edge(2,3)
    H.add_edge(3,4)
    I=nx.intersection(G,H)
    assert_equal( set(I.nodes()) , set([1,2,3,4]) )    
    assert_equal( sorted(I.edges()) , [(2,3)] )    


def test_intersection_attributes():
    g = nx.Graph()
    g.add_node(0, x=4)
    g.add_node(1, x=5)
    g.add_edge(0, 1, size=5)
    g.graph['name'] = 'g'

    h = g.copy()
    h.graph['name'] = 'h'
    h.graph['attr'] = 'attr'
    h.node[0]['x'] = 7

    gh = nx.intersection(g, h)
    assert_equal( set(gh.nodes()) , set(g.nodes()) )
    assert_equal( set(gh.nodes()) , set(h.nodes()) )
    assert_equal( sorted(gh.edges()) , sorted(g.edges()) )

    h.remove_node(0)
    assert_raises(nx.NetworkXError, nx.intersection, g, h)



def test_intersection_multigraph_attributes():
    g = nx.MultiGraph()
    g.add_edge(0, 1, key=0)
    g.add_edge(0, 1, key=1)
    g.add_edge(0, 1, key=2)
    h = nx.MultiGraph()
    h.add_edge(0, 1, key=0)
    h.add_edge(0, 1, key=3)
    gh = nx.intersection(g, h)
    assert_equal( set(gh.nodes()) , set(g.nodes()) )
    assert_equal( set(gh.nodes()) , set(h.nodes()) )
    assert_equal( sorted(gh.edges()) , [(0,1)] )
    assert_equal( sorted(gh.edges(keys=True)) , [(0,1,0)] )


def test_difference():
    G=nx.Graph()
    H=nx.Graph()
    G.add_nodes_from([1,2,3,4])
    G.add_edge(1,2)
    G.add_edge(2,3)
    H.add_nodes_from([1,2,3,4])
    H.add_edge(2,3)
    H.add_edge(3,4)
    D=nx.difference(G,H)
    assert_equal( set(D.nodes()) , set([1,2,3,4]) )    
    assert_equal( sorted(D.edges()) , [(1,2)] )    
    D=nx.difference(H,G)
    assert_equal( set(D.nodes()) , set([1,2,3,4]) )    
    assert_equal( sorted(D.edges()) , [(3,4)] )    
    D=nx.symmetric_difference(G,H)
    assert_equal( set(D.nodes()) , set([1,2,3,4]) )    
    assert_equal( sorted(D.edges()) , [(1,2),(3,4)] )    


def test_difference_attributes():
    g = nx.Graph()
    g.add_node(0, x=4)
    g.add_node(1, x=5)
    g.add_edge(0, 1, size=5)
    g.graph['name'] = 'g'

    h = g.copy()
    h.graph['name'] = 'h'
    h.graph['attr'] = 'attr'
    h.node[0]['x'] = 7

    gh = nx.difference(g, h)
    assert_equal( set(gh.nodes()) , set(g.nodes()) )
    assert_equal( set(gh.nodes()) , set(h.nodes()) )
    assert_equal( sorted(gh.edges()) , [])

    h.remove_node(0)
    assert_raises(nx.NetworkXError, nx.intersection, g, h)

def test_difference_multigraph_attributes():
    g = nx.MultiGraph()
    g.add_edge(0, 1, key=0)
    g.add_edge(0, 1, key=1)
    g.add_edge(0, 1, key=2)
    h = nx.MultiGraph()
    h.add_edge(0, 1, key=0)
    h.add_edge(0, 1, key=3)
    gh = nx.difference(g, h)
    assert_equal( set(gh.nodes()) , set(g.nodes()) )
    assert_equal( set(gh.nodes()) , set(h.nodes()) )
    assert_equal( sorted(gh.edges()) , [(0,1)] )
    assert_equal( sorted(gh.edges(keys=True)) , [(0,1,3)] )


def test_symmetric_difference_multigraph():
    g = nx.MultiGraph()
    g.add_edge(0, 1, key=0)
    g.add_edge(0, 1, key=1)
    g.add_edge(0, 1, key=2)
    h = nx.MultiGraph()
    h.add_edge(0, 1, key=0)
    h.add_edge(0, 1, key=3)
    gh = nx.symmetric_difference(g, h)
    assert_equal( set(gh.nodes()) , set(g.nodes()) )
    assert_equal( set(gh.nodes()) , set(h.nodes()) )
    assert_equal( sorted(gh.edges()) , 3*[(0,1)] )
    assert_equal( sorted(sorted(e) for e in gh.edges(keys=True)), 
                  [[0,1,1],[0,1,2],[0,1,3]] )

def test_union_and_compose():
    K3=complete_graph(3)
    P3=path_graph(3)

    R=DiGraph()
    G1=DiGraph()
    G1.add_edge('A','B')
    G1.add_edge('A','C')
    G1.add_edge('A','D')
    G2=DiGraph()
    G2.add_edge(1,2)
    G2.add_edge(1,3)
    G2.add_edge(1,4)

    G=union(G1,G2,create_using=R)
    H=compose(G1,G2)
    assert_true(sorted(G.edges())==sorted(H.edges()))
    assert_false(G.has_edge('A',1))
    assert_raises(nx.NetworkXError, nx.union, K3, P3)
    H1=union(H,G1,rename=('H','G1'))
    assert_equal(sorted(H1.nodes()),
                 ['G1A', 'G1B', 'G1C', 'G1D', 
                  'H1', 'H2', 'H3', 'H4', 'HA', 'HB', 'HC', 'HD'])

    H2=union(H,G2,rename=("H",""))
    assert_equal(sorted(H2.nodes()),
                 ['1', '2', '3', '4', 
                  'H1', 'H2', 'H3', 'H4', 'HA', 'HB', 'HC', 'HD'])

    assert_false(H1.has_edge('NB','NA'))

    G=compose(G,G)
    assert_equal(sorted(G.edges()),sorted(H.edges()))

    G2=union(G2,G2,rename=('','copy'))
    assert_equal(sorted(G2.nodes()),
                 ['1', '2', '3', '4', 'copy1', 'copy2', 'copy3', 'copy4'])

    assert_equal(G2.neighbors('copy4'),[])
    assert_equal(sorted(G2.neighbors('copy1')),['copy2', 'copy3', 'copy4'])
    assert_equal(len(G),8)
    assert_equal(number_of_edges(G),6)

    E=disjoint_union(G,G)
    assert_equal(len(E),16)
    assert_equal(number_of_edges(E),12)

    E=disjoint_union(G1,G2)
    assert_equal(sorted(E.nodes()),[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])


def test_union_multigraph():
    G=nx.MultiGraph()
    G.add_edge(1,2,key=0)
    G.add_edge(1,2,key=1)
    H=nx.MultiGraph()
    H.add_edge(3,4,key=0)
    H.add_edge(3,4,key=1)
    GH=nx.union(G,H)
    assert_equal( set(GH) , set(G)|set(H))
    assert_equal( set(GH.edges(keys=True)) , 
                  set(G.edges(keys=True))|set(H.edges(keys=True)))

def test_disjoint_union_multigraph():
    G=nx.MultiGraph()
    G.add_edge(0,1,key=0)
    G.add_edge(0,1,key=1)
    H=nx.MultiGraph()
    H.add_edge(2,3,key=0)
    H.add_edge(2,3,key=1)
    GH=nx.disjoint_union(G,H)
    assert_equal( set(GH) , set(G)|set(H))
    assert_equal( set(GH.edges(keys=True)) , 
                  set(G.edges(keys=True))|set(H.edges(keys=True)))


def test_complement():
    null=null_graph()
    empty1=empty_graph(1)
    empty10=empty_graph(10)
    K3=complete_graph(3)
    K5=complete_graph(5)
    K10=complete_graph(10)
    P2=path_graph(2)
    P3=path_graph(3)
    P5=path_graph(5)
    P10=path_graph(10)
    #complement of the complete graph is empty

    G=complement(K3)
    assert_true(is_isomorphic(G,empty_graph(3)))
    G=complement(K5)
    assert_true(is_isomorphic(G,empty_graph(5)))
    # for any G, G=complement(complement(G))
    P3cc=complement(complement(P3))
    assert_true(is_isomorphic(P3,P3cc))
    nullcc=complement(complement(null))
    assert_true(is_isomorphic(null,nullcc))
    b=bull_graph()
    bcc=complement(complement(b))
    assert_true(is_isomorphic(b,bcc))

def test_complement_2():
    G1=DiGraph()
    G1.add_edge('A','B')
    G1.add_edge('A','C')
    G1.add_edge('A','D')
    G1C=complement(G1)
    assert_equal(sorted(G1C.edges()),
                 [('B', 'A'), ('B', 'C'), 
                  ('B', 'D'), ('C', 'A'), ('C', 'B'), 
                  ('C', 'D'), ('D', 'A'), ('D', 'B'), ('D', 'C')])


def test_cartesian_product():
    null=null_graph()
    empty1=empty_graph(1)
    empty10=empty_graph(10)
    K3=complete_graph(3)
    K5=complete_graph(5)
    K10=complete_graph(10)
    P2=path_graph(2)
    P3=path_graph(3)
    P5=path_graph(5)
    P10=path_graph(10)
    # null graph
    G=cartesian_product(null,null)
    assert_true(is_isomorphic(G,null))
    # null_graph X anything = null_graph and v.v.
    G=cartesian_product(null,empty10)
    assert_true(is_isomorphic(G,null))
    G=cartesian_product(null,K3)
    assert_true(is_isomorphic(G,null))
    G=cartesian_product(null,K10)
    assert_true(is_isomorphic(G,null))
    G=cartesian_product(null,P3)
    assert_true(is_isomorphic(G,null))
    G=cartesian_product(null,P10)
    assert_true(is_isomorphic(G,null))
    G=cartesian_product(empty10,null)
    assert_true(is_isomorphic(G,null))
    G=cartesian_product(K3,null)
    assert_true(is_isomorphic(G,null))
    G=cartesian_product(K10,null)
    assert_true(is_isomorphic(G,null))
    G=cartesian_product(P3,null)
    assert_true(is_isomorphic(G,null))
    G=cartesian_product(P10,null)
    assert_true(is_isomorphic(G,null))

    # order(GXH)=order(G)*order(H)
    G=cartesian_product(P5,K3)
    assert_equal(number_of_nodes(G),5*3)
    assert_equal(number_of_edges(G),
                 number_of_edges(P5)*number_of_nodes(K3)+
                 number_of_edges(K3)*number_of_nodes(P5))
    G=cartesian_product(K3,K5)
    assert_equal(number_of_nodes(G),3*5)
    assert_equal(number_of_edges(G),
                 number_of_edges(K5)*number_of_nodes(K3)+
                 number_of_edges(K3)*number_of_nodes(K5))

    # test some classic product graphs
    # cube = 2-path X 2-path
    G=cartesian_product(P2,P2)
    G=cartesian_product(P2,G)
    assert_true(is_isomorphic(G,cubical_graph()))

    # 3x3 grid
    G=cartesian_product(P3,P3)
    assert_true(is_isomorphic(G,grid_2d_graph(3,3)))


def test_cartesian_product_multigraph():
    G=nx.MultiGraph()
    G.add_edge(1,2,key=0)
    G.add_edge(1,2,key=1)
    H=nx.MultiGraph()
    H.add_edge(3,4,key=0)
    H.add_edge(3,4,key=1)
    GH=nx.cartesian_product(G,H)
    assert_equal( set(GH) , set([(1, 3), (2, 3), (2, 4), (1, 4)]))
    assert_equal( set(GH.edges(keys=True)) ,
                  set([((1, 3), (2, 3), 0), ((1, 3), (2, 3), 1), 
                       ((1, 3), (1, 4), 0), ((1, 3), (1, 4), 1), 
                       ((2, 3), (2, 4), 0), ((2, 3), (2, 4), 1), 
                       ((2, 4), (1, 4), 0), ((2, 4), (1, 4), 1)]))

def test_compose_multigraph():
    G=nx.MultiGraph()
    G.add_edge(1,2,key=0)
    G.add_edge(1,2,key=1)
    H=nx.MultiGraph()
    H.add_edge(3,4,key=0)
    H.add_edge(3,4,key=1)
    GH=nx.compose(G,H)
    assert_equal( set(GH) , set(G)|set(H))
    assert_equal( set(GH.edges(keys=True)) , 
                  set(G.edges(keys=True))|set(H.edges(keys=True)))
    H.add_edge(1,2,key=2)
    GH=nx.compose(G,H)
    assert_equal( set(GH) , set(G)|set(H))
    assert_equal( set(GH.edges(keys=True)) , 
                  set(G.edges(keys=True))|set(H.edges(keys=True)))    
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.