operators.py :  » Network » NetworkX » networkx-1.1 » networkx » algorithms » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Network » NetworkX 
NetworkX » networkx 1.1 » networkx » algorithms » operators.py
"""
Operations on graphs including union, intersection, difference,
complement, subgraph. 
"""
#    Copyright (C) 2004-2010 by 
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
__author__ = """\n""".join(['Aric Hagberg (hagberg@lanl.gov)',
                           'Pieter Swart (swart@lanl.gov)',
                           'Dan Schult(dschult@colgate.edu)'])

__all__ = ['union', 'cartesian_product', 
           'compose', 'complement',
           'disjoint_union', 'intersection', 
           'difference', 'symmetric_difference']

import networkx as nx
from networkx.utils import is_string_like
                                                                                

def union(G,H,create_using=None,rename=False,name=None):
    """ Return the union of graphs G and H.
    
    Graphs G and H must be disjoint, otherwise an exception is raised.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph 

    create_using : NetworkX graph
       Use specified graph for result.  Otherwise a new graph is created
       with the same type as G.

    rename : bool (default=False)         
       Node names of G and H can be changed be specifying the tuple
       rename=('G-','H-') (for example).  Node u in G is then renamed
       "G-u" and v in H is renamed "H-v".

    name : string       
       Specify the name for the union graph

    Notes       
    -----
    To force a disjoint union with node relabeling, use
    disjoint_union(G,H) or convert_node_labels_to integers().

    Graph, edge, and node attributes are propagated from G and H
    to the union graph.  If a graph attribute is present in both
    G and H the value from G is used.


    See Also
    --------
    disjoint_union

    """
    if name is None:
        name="union( %s, %s )"%(G.name,H.name)
    if create_using is None:
        R=G.__class__()
    else:
        R=create_using
        R.clear()
    R.name=name

    # rename graph to obtain disjoint node labels
    if rename: # create new string labels
        import functools
        def add_prefix(x,prefix=''):
            if is_string_like(x):
                name=prefix+x
            else:
                name=prefix+repr(x)
            return name
        mapping=functools.partial(add_prefix,prefix=rename[0])
        G=nx.relabel_nodes(G,mapping)
        mapping=functools.partial(add_prefix,prefix=rename[1])
        H=nx.relabel_nodes(H,mapping)

    if set(G) & set(H):
        raise nx.NetworkXError(\
            """The node sets of G and H are not disjoint. 
Use appropriate rename=('Gprefix','Hprefix') or use disjoint_union(G,H).""")
    # node names OK, now build union
    R.add_nodes_from(G)
    if G.is_multigraph():
        R.add_edges_from(e for e in G.edges_iter(keys=True,data=True))
    else:
        R.add_edges_from(e for e in G.edges_iter(data=True))
    R.add_nodes_from(H)
    if H.is_multigraph():
        R.add_edges_from(e for e in H.edges_iter(keys=True,data=True))
    else:
        R.add_edges_from(e for e in H.edges_iter(data=True))

    # add node attributes
    R.node.update(G.node)
    R.node.update(H.node)
    # add graph attributes, G attributes take precedent over H attributes
    R.graph.update(H.graph)
    R.graph.update(G.graph)
    return R


def disjoint_union(G,H):
    """ Return the disjoint union of graphs G and H, forcing distinct integer
    node labels.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph 

    Notes
    -----
    A new graph is created, of the same class as G.  It is recommended
    that G and H be either both directed or both undirected.

    """
    R1=nx.convert_node_labels_to_integers(G)
    R2=nx.convert_node_labels_to_integers(H,first_label=len(R1))
    R=union(R1,R2)
    R.name="disjoint_union( %s, %s )"%(G.name,H.name)
    return R


def intersection(G,H,create_using=None ):
    """Return a new graph that contains only the edges that exist in 
    both G and H.   

    The node sets of H and G must be the same.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph.  G and H must have the same node sets. 

    create_using : NetworkX graph
       Use specified graph for result.  Otherwise a new graph is created
       with the same type as G.

    Notes
    -----
    Attributes from the graph, nodes, and edges are not copied to the new
    graph.  If you want a new graph of the intersection of G and H
    with the attributes (including edge data) from G use remove_nodes_from()
    as follows

    >>> G=nx.path_graph(3)
    >>> H=nx.path_graph(5)
    >>> R=G.copy()
    >>> R.remove_nodes_from(n for n in G if n not in H)

    """
    # create new graph         
    if create_using is None:  # Graph object of the same type as G
        R=nx.create_empty_copy(G)
    else:                     # user specified graph 
        R=create_using 
        R.clear() 

    R.name="Intersection of (%s and %s)"%(G.name, H.name)

    if set(G)!=set(H):
        raise nx.NetworkXError("Node sets of graphs are not equal")     
    
    if G.number_of_edges()<=H.number_of_edges():
        if G.is_multigraph():
            edges=G.edges_iter(keys=True)
        else:
            edges=G.edges_iter()
        for e in edges:
            if H.has_edge(*e):
                R.add_edge(*e)
    else:
        if H.is_multigraph():
            edges=H.edges_iter(keys=True)
        else:
            edges=H.edges_iter()
        for e in edges:
            if G.has_edge(*e):
                R.add_edge(*e)

    return R

def difference(G,H,create_using=None):
    """Return a new graph that contains the edges that exist in 
    in G but not in H.  

    The node sets of H and G must be the same.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph.  G and H must have the same node sets. 

    create_using : NetworkX graph
       Use specified graph for result.  Otherwise a new graph is created
       with the same type as G.

    Notes
    -----
    Attributes from the graph, nodes, and edges are not copied to the new
    graph.  If you want a new graph of the difference of G and H with
    with the attributes (including edge data) from G use remove_nodes_from()
    as follows

    >>> G=nx.path_graph(3)
    >>> H=nx.path_graph(5)
    >>> R=G.copy()
    >>> R.remove_nodes_from(n for n in G if n in H)

    """
    # create new graph         
    if create_using is None:  # Graph object of the same type as G
        R=nx.create_empty_copy(G)
    else:                     # user specified graph 
        R=create_using 
        R.clear() 

    R.name="Difference of (%s and %s)"%(G.name, H.name)

    if set(G)!=set(H):
        raise nx.NetworkXError("Node sets of graphs not equal")        
    
    if G.number_of_edges()<=H.number_of_edges():
        if G.is_multigraph():
            edges=G.edges_iter(keys=True)
        else:
            edges=G.edges_iter()
        for e in edges:
            if not H.has_edge(*e):
                R.add_edge(*e)
    else:
        if H.is_multigraph():
            edges=H.edges_iter(keys=True)
        else:
            edges=H.edges_iter()
        for e in edges:
            if not G.has_edge(*e):
                R.add_edge(*e)

    return R

def symmetric_difference(G,H,create_using=None ):
    """Return new graph with edges that exist in in either G or H but
    not both.

    The node sets of H and G must be the same.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph.  G and H must have the same node sets. 

    create_using : NetworkX graph
       Use specified graph for result.  Otherwise a new graph is created
       with the same type as G.

    Notes
    -----
    Attributes from the graph, nodes, and edges are not copied to the new
    graph. 
    """
    # create new graph         
    if create_using is None:  # Graph object of the same type as G
        R=nx.create_empty_copy(G)
    else:                     # user specified graph 
        R=create_using 
        R.clear() 

    R.name="Symmetric difference of (%s and %s)"%(G.name, H.name)

    if set(G)!=set(H):
        raise nx.NetworkXError("Node sets of graphs not equal")        
    
    gnodes=set(G) # set of nodes in G
    hnodes=set(H) # set of nodes in H
    nodes=gnodes.symmetric_difference(hnodes)
    R.add_nodes_from(nodes)
    
    if G.is_multigraph():
        edges=G.edges_iter(keys=True)
    else:
        edges=G.edges_iter()
    # we could copy the data here but then this function doesn't
    # match intersection and difference
    for e in edges:
        if not H.has_edge(*e):
            R.add_edge(*e)

    if H.is_multigraph():
        edges=H.edges_iter(keys=True)
    else:
        edges=H.edges_iter()
    for e in edges:
        if not G.has_edge(*e):
            R.add_edge(*e)
    return R

def cartesian_product(G,H,create_using=None):
    """ Return the Cartesian product of G and H.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph 

    create_using : NetworkX graph
       Use specified graph for result.  Otherwise a new graph is created
       with the same type as G.

    Notes
    -----
    Only tested with Graph class.  Graph, node, and edge attributes
    are not copied to the new graph.
    """
    if create_using is None:
        Prod=G.__class__()
    else:
        Prod=create_using
        Prod.clear()

    for v in G:
        for w in H:
            Prod.add_node((v,w)) 

    if G.is_multigraph():
        Prod.add_edges_from( (((v,w1),(v,w2),k,d) 
                              for w1,w2,k,d 
                              in H.edges_iter(keys=True,data=True) 
                              for v in G) )
        Prod.add_edges_from( (((v1,w),(v2,w),k,d) 
                              for v1,v2,k,d 
                              in G.edges_iter(keys=True,data=True) 
                              for w in H) )

    else:
        Prod.add_edges_from( (((v,w1),(v,w2),d) 
                              for w1,w2,d in H.edges_iter(data=True) 
                              for v in G) )
        Prod.add_edges_from( (((v1,w),(v2,w),d) 
                              for v1,v2,d in G.edges_iter(data=True) 
                              for w in H) )

    Prod.name="Cartesian Product("+G.name+","+H.name+")"
    return Prod


def compose(G,H,create_using=None, name=None):
    """ Return a new graph of G composed with H.
    
    Composition is the simple union of the node sets and edge sets.
    The node sets of G and H need not be disjoint.

    Parameters
    ----------
    G,H : graph
       A NetworkX graph 

    create_using : NetworkX graph
       Use specified graph for result.  Otherwise a new graph is created
       with the same type as G

    name : string       
       Specify name for new graph

    Notes
    -----
    A new graph is returned, of the same class as G.  It is
    recommended that G and H be either both directed or both
    undirected.  Attributes from G take precedent over attributes
    from H.

    """
    if name is None:
        name="compose( %s, %s )"%(G.name,H.name)
    if create_using is None:
        R=G.__class__()
    else:
        R=create_using
        R.clear()
    R.name=name
    R.add_nodes_from(H.nodes())
    R.add_nodes_from(G.nodes())
    if H.is_multigraph():
        R.add_edges_from(H.edges_iter(keys=True,data=True))
    else:
        R.add_edges_from(H.edges_iter(data=True))
    if G.is_multigraph():
        R.add_edges_from(G.edges_iter(keys=True,data=True))
    else:
        R.add_edges_from(G.edges_iter(data=True))

    # add node attributes, G attributes take precedent over H attributes
    R.node.update(H.node)
    R.node.update(G.node)
    # add graph attributes, G attributes take precedent over H attributes
    R.graph.update(H.graph)
    R.graph.update(G.graph)

    return R


def complement(G,create_using=None,name=None):
    """ Return graph complement of G.

    Parameters
    ----------
    G : graph
       A NetworkX graph 

    create_using : NetworkX graph
       Use specified graph for result.  Otherwise a new graph is created.

    name : string       
       Specify name for new graph

    Notes
    ------
    Note that complement() does not create self-loops and also 
    does not produce parallel edges for MultiGraphs.

    Graph, node, and edge data are not propagated to the new graph.
    """
    if name is None:
        name="complement(%s)"%(G.name) 
    if create_using is None:
        R=G.__class__()
    else:
        R=create_using
        R.clear()
    R.name=name
    R.add_nodes_from(G)
    R.add_edges_from( ((n,n2) 
                       for n,nbrs in G.adjacency_iter() 
                       for n2 in G if n2 not in nbrs 
                       if n is not n2) )
    return R



www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.