basic.py :  » Math » SciPy » scipy » scipy » special » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » SciPy 
SciPy » scipy » scipy » special » basic.py
#
# Author:  Travis Oliphant, 2002
#

from numpy import *
from _cephes import *
import types
import specfun
import orthogonal

def sinc(x):
    """Returns sin(pi*x)/(pi*x) at all points of array x.
    """
    w = asarray(asarray(x)*pi)
    return where(x==0, 1.0, sin(w)/w)

def diric(x,n):
    """Returns the periodic sinc function also called the dirichlet function:

    diric(x) = sin(x *n / 2) / (n sin(x / 2))

    where n is a positive integer.
    """
    x,n = asarray(x), asarray(n)
    n = asarray(n + (x-x))
    x = asarray(x + (n-n))
    if issubdtype(x.dtype, inexact):
        ytype = x.dtype
    else:
        ytype = float
    y = zeros(x.shape,ytype)

    mask1 = (n <= 0) | (n <> floor(n))
    place(y,mask1,nan)

    z = asarray(x / 2.0 / pi)
    mask2 = (1-mask1) & (z == floor(z))
    zsub = extract(mask2,z)
    nsub = extract(mask2,n)
    place(y,mask2,pow(-1,zsub*(nsub-1)))

    mask = (1-mask1) & (1-mask2)
    xsub = extract(mask,x)
    nsub = extract(mask,n)
    place(y,mask,sin(nsub*xsub/2.0)/(nsub*sin(xsub/2.0)))
    return y



def jnjnp_zeros(nt):
    """Compute nt (<=1200) zeros of the bessel functions Jn and Jn'
    and arange them in order of their magnitudes.

    Outputs (all are arrays of length nt):

       zo[l-1] -- Value of the lth zero of of Jn(x) and Jn'(x)
       n[l-1]  -- Order of the Jn(x) or Jn'(x) associated with lth zero
       m[l-1]  -- Serial number of the zeros of Jn(x) or Jn'(x) associated
                    with lth zero.
       t[l-1]  -- 0 if lth zero in zo is zero of Jn(x), 1 if it is a zero
                    of Jn'(x)

    See jn_zeros, jnp_zeros to get separated arrays of zeros.
    """
    if not isscalar(nt) or (floor(nt)!=nt) or (nt>1200):
        raise ValueError, "Number must be integer <= 1200."
    nt = int(nt)
    n,m,t,zo = specfun.jdzo(nt)
    return zo[:nt],n[:nt],m[:nt],t[:nt]

def jnyn_zeros(n,nt):
    """Compute nt zeros of the Bessel functions Jn(x), Jn'(x), Yn(x), and
    Yn'(x), respectively. Returns 4 arrays of length nt.

    See jn_zeros, jnp_zeros, yn_zeros, ynp_zeros to get separate arrays.
    """
    if not (isscalar(nt) and isscalar(n)):
        raise ValueError, "Arguments must be scalars."
    if (floor(n)!=n) or (floor(nt)!=nt):
        raise ValueError, "Arguments must be integers."
    if (nt <=0):
        raise ValueError, "nt > 0"
    return specfun.jyzo(abs(n),nt)

def jn_zeros(n,nt):
    """Compute nt zeros of the Bessel function Jn(x).
    """
    return jnyn_zeros(n,nt)[0]
def jnp_zeros(n,nt):
    """Compute nt zeros of the Bessel function Jn'(x).
    """
    return jnyn_zeros(n,nt)[1]
def yn_zeros(n,nt):
    """Compute nt zeros of the Bessel function Yn(x).
    """
    return jnyn_zeros(n,nt)[2]
def ynp_zeros(n,nt):
    """Compute nt zeros of the Bessel function Yn'(x).
    """
    return jnyn_zeros(n,nt)[3]

def y0_zeros(nt,complex=0):
    """Returns nt (complex or real) zeros of Y0(z), z0, and the value
    of Y0'(z0) = -Y1(z0) at each zero.
    """
    if not isscalar(nt) or (floor(nt)!=nt) or (nt <=0):
        raise ValueError, "Arguments must be scalar positive integer."
    kf = 0
    kc = (complex != 1)
    return specfun.cyzo(nt,kf,kc)

def y1_zeros(nt,complex=0):
    """Returns nt (complex or real) zeros of Y1(z), z1, and the value
    of Y1'(z1) = Y0(z1) at each zero.
    """
    if not isscalar(nt) or (floor(nt)!=nt) or (nt <=0):
        raise ValueError, "Arguments must be scalar positive integer."
    kf = 1
    kc = (complex != 1)
    return specfun.cyzo(nt,kf,kc)

def y1p_zeros(nt,complex=0):
    """Returns nt (complex or real) zeros of Y1'(z), z1', and the value
    of Y1(z1') at each zero.
    """
    if not isscalar(nt) or (floor(nt)!=nt) or (nt <=0):
        raise ValueError, "Arguments must be scalar positive integer."
    kf = 2
    kc = (complex != 1)
    return specfun.cyzo(nt,kf,kc)

def bessel_diff_formula(v, z, n, L, phase):
    # from AMS55.
    # L(v,z) = J(v,z), Y(v,z), H1(v,z), H2(v,z), phase = -1
    # L(v,z) = I(v,z) or exp(v*pi*i)K(v,z), phase = 1
    # For K, you can pull out the exp((v-k)*pi*i) into the caller
    p = 1.0
    s = L(v-n, z)
    for i in xrange(1, n+1):
        p = phase * (p * (n-i+1)) / i   # = choose(k, i)
        s += p*L(v-n + i*2, z)
    return s / (2.**n)

def jvp(v,z,n=1):
    """Return the nth derivative of Jv(z) with respect to z.
    """
    if not isinstance(n,types.IntType) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if n == 0:
        return jv(v,z)
    else:
        return bessel_diff_formula(v, z, n, jv, -1)
#        return (jvp(v-1,z,n-1) - jvp(v+1,z,n-1))/2.0

def yvp(v,z,n=1):
    """Return the nth derivative of Yv(z) with respect to z.
    """
    if not isinstance(n,types.IntType) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if n == 0:
        return yv(v,z)
    else:
        return bessel_diff_formula(v, z, n, yv, -1)
#        return (yvp(v-1,z,n-1) - yvp(v+1,z,n-1))/2.0

def kvp(v,z,n=1):
    """Return the nth derivative of Kv(z) with respect to z.
    """
    if not isinstance(n,types.IntType) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if n == 0:
        return kv(v,z)
    else:
        return (-1)**n * bessel_diff_formula(v, z, n, kv, 1)

def ivp(v,z,n=1):
    """Return the nth derivative of Iv(z) with respect to z.
    """
    if not isinstance(n,types.IntType) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if n == 0:
        return iv(v,z)
    else:
        return bessel_diff_formula(v, z, n, iv, 1)

def h1vp(v,z,n=1):
    """Return the nth derivative of H1v(z) with respect to z.
    """
    if not isinstance(n,types.IntType) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if n == 0:
        return hankel1(v,z)
    else:
        return bessel_diff_formula(v, z, n, hankel1, -1)
#        return (h1vp(v-1,z,n-1) - h1vp(v+1,z,n-1))/2.0

def h2vp(v,z,n=1):
    """Return the nth derivative of H2v(z) with respect to z.
    """
    if not isinstance(n,types.IntType) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if n == 0:
        return hankel2(v,z)
    else:
        return bessel_diff_formula(v, z, n, hankel2, -1)
#        return (h2vp(v-1,z,n-1) - h2vp(v+1,z,n-1))/2.0

def sph_jn(n,z):
    """Compute the spherical Bessel function jn(z) and its derivative for
    all orders up to and including n.
    """
    if not (isscalar(n) and isscalar(z)):
        raise ValueError, "arguments must be scalars."
    if (n!= floor(n)) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if (n < 1): n1 = 1
    else: n1 = n
    if iscomplex(z):
        nm,jn,jnp,yn,ynp = specfun.csphjy(n1,z)
    else:
        nm,jn,jnp = specfun.sphj(n1,z)
    return jn[:(n+1)], jnp[:(n+1)]

def sph_yn(n,z):
    """Compute the spherical Bessel function yn(z) and its derivative for
    all orders up to and including n.
    """
    if not (isscalar(n) and isscalar(z)):
        raise ValueError, "arguments must be scalars."
    if (n!= floor(n)) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if (n < 1): n1 = 1
    else: n1 = n
    if iscomplex(z) or less(z,0):
        nm,jn,jnp,yn,ynp = specfun.csphjy(n1,z)
    else:
        nm,yn,ynp = specfun.sphy(n1,z)
    return yn[:(n+1)], ynp[:(n+1)]

def sph_jnyn(n,z):
    """Compute the spherical Bessel functions, jn(z) and yn(z) and their
    derivatives for all orders up to and including n.
    """
    if not (isscalar(n) and isscalar(z)):
        raise ValueError, "arguments must be scalars."
    if (n!= floor(n)) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if (n < 1): n1 = 1
    else: n1 = n
    if iscomplex(z) or less(z,0):
        nm,jn,jnp,yn,ynp = specfun.csphjy(n1,z)
    else:
        nm,yn,ynp = specfun.sphy(n1,z)
        nm,jn,jnp = specfun.sphj(n1,z)
    return jn[:(n+1)],jnp[:(n+1)],yn[:(n+1)],ynp[:(n+1)]

def sph_in(n,z):
    """Compute the spherical Bessel function in(z) and its derivative for
    all orders up to and including n.
    """
    if not (isscalar(n) and isscalar(z)):
        raise ValueError, "arguments must be scalars."
    if (n!= floor(n)) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if (n < 1): n1 = 1
    else: n1 = n
    if iscomplex(z):
        nm,In,Inp,kn,knp = specfun.csphik(n1,z)
    else:
        nm,In,Inp = specfun.sphi(n1,z)
    return In[:(n+1)], Inp[:(n+1)]

def sph_kn(n,z):
    """Compute the spherical Bessel function kn(z) and its derivative for
    all orders up to and including n.
    """
    if not (isscalar(n) and isscalar(z)):
        raise ValueError, "arguments must be scalars."
    if (n!= floor(n)) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if (n < 1): n1 = 1
    else: n1 = n
    if iscomplex(z) or less(z,0):
        nm,In,Inp,kn,knp = specfun.csphik(n1,z)
    else:
        nm,kn,knp = specfun.sphk(n1,z)
    return kn[:(n+1)], knp[:(n+1)]

def sph_inkn(n,z):
    """Compute the spherical Bessel functions, in(z) and kn(z) and their
    derivatives for all orders up to and including n.
    """
    if not (isscalar(n) and isscalar(z)):
        raise ValueError, "arguments must be scalars."
    if (n!= floor(n)) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if iscomplex(z) or less(z,0):
        nm,In,Inp,kn,knp = specfun.csphik(n,z)
    else:
        nm,In,Inp = specfun.sphi(n,z)
        nm,kn,knp = specfun.sphk(n,z)
    return In,Inp,kn,knp

def riccati_jn(n,x):
    """Compute the Ricatti-Bessel function of the first kind and its
    derivative for all orders up to and including n.
    """
    if not (isscalar(n) and isscalar(x)):
        raise ValueError, "arguments must be scalars."
    if (n!= floor(n)) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if (n == 0): n1 = 1
    else: n1 = n
    nm,jn,jnp = specfun.rctj(n1,x)
    return jn[:(n+1)],jnp[:(n+1)]

def riccati_yn(n,x):
    """Compute the Ricatti-Bessel function of the second kind and its
    derivative for all orders up to and including n.
    """
    if not (isscalar(n) and isscalar(x)):
        raise ValueError, "arguments must be scalars."
    if (n!= floor(n)) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if (n == 0): n1 = 1
    else: n1 = n
    nm,jn,jnp = specfun.rcty(n1,x)
    return jn[:(n+1)],jnp[:(n+1)]

def _sph_harmonic(m,n,theta,phi):
    """Compute spherical harmonics.

    This is a ufunc and may take scalar or array arguments like any
    other ufunc.  The inputs will be broadcasted against each other.

    Parameters
    ----------
    m : int
       |m| <= n; the order of the harmonic.
    n : int
       where `n` >= 0; the degree of the harmonic.  This is often called
       ``l`` (lower case L) in descriptions of spherical harmonics.
    theta : float
       [0, 2*pi]; the azimuthal (longitudinal) coordinate.
    phi : float
       [0, pi]; the polar (colatitudinal) coordinate.

    Returns
    -------
    y_mn : complex float
       The harmonic $Y^m_n$ sampled at `theta` and `phi`

    Notes
    -----
    There are different conventions for the meaning of input arguments
    `theta` and `phi`.  We take `theta` to be the azimuthal angle and
    `phi` to be the polar angle.  It is common to see the opposite
    convention - that is `theta` as the polar angle and `phi` as the
    azimuthal angle.
    """
    x = cos(phi)
    m,n = int(m), int(n)
    Pmn,Pmn_deriv = lpmn(m,n,x)
    # Legendre call generates all orders up to m and degrees up to n
    val = Pmn[-1, -1]
    val *= sqrt((2*n+1)/4.0/pi)
    val *= exp(0.5*(gammaln(n-m+1)-gammaln(n+m+1)))
    val *= exp(1j*m*theta)
    return val

sph_harm = vectorize(_sph_harmonic,'D')

def erfinv(y):
    return ndtri((y+1)/2.0)/sqrt(2)

def erfcinv(y):
    return ndtri((2-y)/2.0)/sqrt(2)

def erf_zeros(nt):
    """Compute nt complex zeros of the error function erf(z).
    """
    if (floor(nt)!=nt) or (nt<=0) or not isscalar(nt):
        raise ValueError, "Argument must be positive scalar integer."
    return specfun.cerzo(nt)

def fresnelc_zeros(nt):
    """Compute nt complex zeros of the cosine fresnel integral C(z).
    """
    if (floor(nt)!=nt) or (nt<=0) or not isscalar(nt):
        raise ValueError, "Argument must be positive scalar integer."
    return specfun.fcszo(1,nt)

def fresnels_zeros(nt):
    """Compute nt complex zeros of the sine fresnel integral S(z).
    """
    if (floor(nt)!=nt) or (nt<=0) or not isscalar(nt):
        raise ValueError, "Argument must be positive scalar integer."
    return specfun.fcszo(2,nt)

def fresnel_zeros(nt):
    """Compute nt complex zeros of the sine and cosine fresnel integrals
    S(z) and C(z).
    """
    if (floor(nt)!=nt) or (nt<=0) or not isscalar(nt):
        raise ValueError, "Argument must be positive scalar integer."
    return specfun.fcszo(2,nt), specfun.fcszo(1,nt)

def hyp0f1(v,z):
    """Confluent hypergeometric limit function 0F1.
    Limit as q->infinity of 1F1(q;a;z/q)
    """
    z = asarray(z)
    if issubdtype(z.dtype, complexfloating):
        arg = 2*sqrt(abs(z))
        num = where(z>=0, iv(v-1,arg), jv(v-1,arg))
        den = abs(z)**((v-1.0)/2)
    else:
        num = iv(v-1,2*sqrt(z))
        den = z**((v-1.0)/2.0)
    num *= gamma(v)
    return where(z==0,1.0,num/ asarray(den))

def assoc_laguerre(x,n,k=0.0):
    return orthogonal.eval_genlaguerre(n, k, x)

digamma = psi

def polygamma(n, x):
    """Polygamma function which is the nth derivative of the digamma (psi)
    function."""
    n, x = asarray(n), asarray(x)
    cond = (n==0)
    fac2 = (-1.0)**(n+1) * gamma(n+1.0) * zeta(n+1,x)
    if sometrue(cond,axis=0):
        return where(cond, psi(x), fac2)
    return fac2

def mathieu_even_coef(m,q):
    """Compute expansion coefficients for even mathieu functions and
    modified mathieu functions.
    """
    if not (isscalar(m) and isscalar(q)):
        raise ValueError, "m and q must be scalars."
    if (q < 0):
        raise ValueError, "q >=0"
    if (m != floor(m)) or (m<0):
        raise ValueError, "m must be an integer >=0."

    if (q <= 1):
        qm = 7.5+56.1*sqrt(q)-134.7*q+90.7*sqrt(q)*q
    else:
        qm=17.0+3.1*sqrt(q)-.126*q+.0037*sqrt(q)*q
    km = int(qm+0.5*m)
    if km > 251:
        print "Warning, too many predicted coefficients."
    kd = 1
    m = int(floor(m))
    if m % 2:
        kd = 2

    a = mathieu_a(m,q)
    fc = specfun.fcoef(kd,m,q,a)
    return fc[:km]

def mathieu_odd_coef(m,q):
    """Compute expansion coefficients for even mathieu functions and
    modified mathieu functions.
    """
    if not (isscalar(m) and isscalar(q)):
        raise ValueError, "m and q must be scalars."
    if (q < 0):
        raise ValueError, "q >=0"
    if (m != floor(m)) or (m<=0):
        raise ValueError, "m must be an integer > 0"

    if (q <= 1):
        qm = 7.5+56.1*sqrt(q)-134.7*q+90.7*sqrt(q)*q
    else:
        qm=17.0+3.1*sqrt(q)-.126*q+.0037*sqrt(q)*q
    km = int(qm+0.5*m)
    if km > 251:
        print "Warning, too many predicted coefficients."
    kd = 4
    m = int(floor(m))
    if m % 2:
        kd = 3

    b = mathieu_b(m,q)
    fc = specfun.fcoef(kd,m,q,b)
    return fc[:km]

def lpmn(m,n,z):
    """Associated Legendre functions of the first kind, Pmn(z) and its
    derivative, Pmn'(z) of order m and degree n.  Returns two
    arrays of size (m+1,n+1) containing Pmn(z) and Pmn'(z) for
    all orders from 0..m and degrees from 0..n.

    z can be complex.

    Parameters
    ----------
    m : int
       |m| <= n; the order of the Legendre function
    n : int
       where `n` >= 0; the degree of the Legendre function.  Often
       called ``l`` (lower case L) in descriptions of the associated
       Legendre function
    z : float or complex
       input value

    Returns
    -------
    Pmn_z : (m+1, n+1) array
       Values for all orders 0..m and degrees 0..n
    Pmn_d_z : (m+1, n+1) array
       Derivatives for all orders 0..m and degrees 0..n       
    """
    if not isscalar(m) or (abs(m)>n):
        raise ValueError, "m must be <= n."
    if not isscalar(n) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if not isscalar(z):
        raise ValueError, "z must be scalar."
    if (m < 0):
        mp = -m
        mf,nf = mgrid[0:mp+1,0:n+1]
        sv = errprint(0)
        fixarr = where(mf>nf,0.0,(-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1))
        sv = errprint(sv)
    else:
        mp = m
    if iscomplex(z):
        p,pd = specfun.clpmn(mp,n,real(z),imag(z))
    else:
        p,pd = specfun.lpmn(mp,n,z)
    if (m < 0):
        p = p * fixarr
        pd = pd * fixarr
    return p,pd



def lqmn(m,n,z):
    """Associated Legendre functions of the second kind, Qmn(z) and its
    derivative, Qmn'(z) of order m and degree n.  Returns two
    arrays of size (m+1,n+1) containing Qmn(z) and Qmn'(z) for
    all orders from 0..m and degrees from 0..n.

    z can be complex.
    """
    if not isscalar(m) or (m<0):
        raise ValueError, "m must be a non-negative integer."
    if not isscalar(n) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if not isscalar(z):
        raise ValueError, "z must be scalar."
    m = int(m)
    n = int(n)

    # Ensure neither m nor n == 0
    mm = max(1,m)
    nn = max(1,n)

    if iscomplex(z):
        q,qd = specfun.clqmn(mm,nn,z)
    else:
        q,qd = specfun.lqmn(mm,nn,z)
    return q[:(m+1),:(n+1)],qd[:(m+1),:(n+1)]


def bernoulli(n):
    """Return an array of the Bernoulli numbers B0..Bn
    """
    if not isscalar(n) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    n = int(n)
    if (n < 2): n1 = 2
    else: n1 = n
    return specfun.bernob(int(n1))[:(n+1)]

def euler(n):
    """Return an array of the Euler numbers E0..En (inclusive)
    """
    if not isscalar(n) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    n = int(n)
    if (n < 2): n1 = 2
    else:  n1 = n
    return specfun.eulerb(n1)[:(n+1)]

def lpn(n,z):
    """Compute sequence of Legendre functions of the first kind (polynomials),
    Pn(z) and derivatives for all degrees from 0 to n (inclusive).

    See also special.legendre  for polynomial class.
    """
    if not (isscalar(n) and isscalar(z)):
        raise ValueError, "arguments must be scalars."
    if (n!= floor(n)) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if (n < 1): n1 = 1
    else: n1 = n
    if iscomplex(z):
        pn,pd = specfun.clpn(n1,z)
    else:
        pn,pd = specfun.lpn(n1,z)
    return pn[:(n+1)],pd[:(n+1)]

## lpni

def lqn(n,z):
    """Compute sequence of Legendre functions of the second kind,
    Qn(z) and derivatives for all degrees from 0 to n (inclusive).
    """
    if not (isscalar(n) and isscalar(z)):
        raise ValueError, "arguments must be scalars."
    if (n!= floor(n)) or (n<0):
        raise ValueError, "n must be a non-negative integer."
    if (n < 1): n1 = 1
    else: n1 = n
    if iscomplex(z):
        qn,qd = specfun.clqn(n1,z)
    else:
        qn,qd = specfun.lqnb(n1,z)
    return qn[:(n+1)],qd[:(n+1)]

def ai_zeros(nt):
    """Compute the zeros of Airy Functions Ai(x) and Ai'(x), a and a'
    respectively, and the associated values of Ai(a') and Ai'(a).

    Outputs:

      a[l-1]   -- the lth zero of Ai(x)
      ap[l-1]  -- the lth zero of Ai'(x)
      ai[l-1]  -- Ai(ap[l-1])
      aip[l-1] -- Ai'(a[l-1])
    """
    kf = 1
    if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
        raise ValueError, "nt must be a positive integer scalar."
    return specfun.airyzo(nt,kf)

def bi_zeros(nt):
    """Compute the zeros of Airy Functions Bi(x) and Bi'(x), b and b'
    respectively, and the associated values of Ai(b') and Ai'(b).

    Outputs:

      b[l-1]   -- the lth zero of Bi(x)
      bp[l-1]  -- the lth zero of Bi'(x)
      bi[l-1]  -- Bi(bp[l-1])
      bip[l-1] -- Bi'(b[l-1])
    """
    kf = 2
    if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
        raise ValueError, "nt must be a positive integer scalar."
    return specfun.airyzo(nt,kf)

def lmbda(v,x):
    """Compute sequence of lambda functions with arbitrary order v
    and their derivatives.  Lv0(x)..Lv(x) are computed with v0=v-int(v).
    """
    if not (isscalar(v) and isscalar(x)):
        raise ValueError, "arguments must be scalars."
    if (v<0):
        raise ValueError, "argument must be > 0."
    n = int(v)
    v0 = v - n
    if (n < 1): n1 = 1
    else: n1 = n
    v1 = n1 + v0
    if (v!=floor(v)):
        vm, vl, dl = specfun.lamv(v1,x)
    else:
        vm, vl, dl = specfun.lamn(v1,x)
    return vl[:(n+1)], dl[:(n+1)]

def pbdv_seq(v,x):
    """Compute sequence of parabolic cylinder functions Dv(x) and
    their derivatives for Dv0(x)..Dv(x) with v0=v-int(v).
    """
    if not (isscalar(v) and isscalar(x)):
        raise ValueError, "arguments must be scalars."
    n = int(v)
    v0 = v-n
    if (n < 1): n1=1
    else: n1 = n
    v1 = n1 + v0
    dv,dp,pdf,pdd = specfun.pbdv(v1,x)
    return dv[:n1+1],dp[:n1+1]

def pbvv_seq(v,x):
    """Compute sequence of parabolic cylinder functions Dv(x) and
    their derivatives for Dv0(x)..Dv(x) with v0=v-int(v).
    """
    if not (isscalar(v) and isscalar(x)):
        raise ValueError, "arguments must be scalars."
    n = int(v)
    v0 = v-n
    if (n <= 1): n1=1
    else: n1 = n
    v1 = n1 + v0
    dv,dp,pdf,pdd = specfun.pbvv(v1,x)
    return dv[:n1+1],dp[:n1+1]

def pbdn_seq(n,z):
    """Compute sequence of parabolic cylinder functions Dn(z) and
    their derivatives for D0(z)..Dn(z).
    """
    if not (isscalar(n) and isscalar(z)):
        raise ValueError, "arguments must be scalars."
    if (floor(n)!=n):
        raise ValueError, "n must be an integer."
    if (abs(n) <= 1):
        n1 = 1
    else:
        n1 = n
    cpb,cpd = specfun.cpbdn(n1,z)
    return cpb[:n1+1],cpd[:n1+1]

def ber_zeros(nt):
    """Compute nt zeros of the kelvin function ber x
    """
    if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
        raise ValueError, "nt must be positive integer scalar."
    return specfun.klvnzo(nt,1)

def bei_zeros(nt):
    """Compute nt zeros of the kelvin function bei x
    """
    if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
        raise ValueError, "nt must be positive integer scalar."
    return specfun.klvnzo(nt,2)

def ker_zeros(nt):
    """Compute nt zeros of the kelvin function ker x
    """
    if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
        raise ValueError, "nt must be positive integer scalar."
    return specfun.klvnzo(nt,3)

def kei_zeros(nt):
    """Compute nt zeros of the kelvin function kei x
    """
    if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
        raise ValueError, "nt must be positive integer scalar."
    return specfun.klvnzo(nt,4)

def berp_zeros(nt):
    """Compute nt zeros of the kelvin function ber' x
    """
    if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
        raise ValueError, "nt must be positive integer scalar."
    return specfun.klvnzo(nt,5)

def beip_zeros(nt):
    """Compute nt zeros of the kelvin function bei' x
    """
    if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
        raise ValueError, "nt must be positive integer scalar."
    return specfun.klvnzo(nt,6)

def kerp_zeros(nt):
    """Compute nt zeros of the kelvin function ker' x
    """
    if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
        raise ValueError, "nt must be positive integer scalar."
    return specfun.klvnzo(nt,7)

def keip_zeros(nt):
    """Compute nt zeros of the kelvin function kei' x
    """
    if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
        raise ValueError, "nt must be positive integer scalar."
    return specfun.klvnzo(nt,8)

def kelvin_zeros(nt):
    """Compute nt zeros of all the kelvin functions returned in a
    length 8 tuple of arrays of length nt.
    The tuple containse the arrays of zeros of
    (ber, bei, ker, kei, ber', bei', ker', kei')
    """
    if not isscalar(nt) or (floor(nt)!=nt) or (nt<=0):
        raise ValueError, "nt must be positive integer scalar."
    return specfun.klvnzo(nt,1), \
           specfun.klvnzo(nt,2), \
           specfun.klvnzo(nt,3), \
           specfun.klvnzo(nt,4), \
           specfun.klvnzo(nt,5), \
           specfun.klvnzo(nt,6), \
           specfun.klvnzo(nt,7), \
           specfun.klvnzo(nt,8)

def pro_cv_seq(m,n,c):
    """Compute a sequence of characteristic values for the prolate
    spheroidal wave functions for mode m and n'=m..n and spheroidal
    parameter c.
    """
    if not (isscalar(m) and isscalar(n) and isscalar(c)):
        raise ValueError, "Arguments must be scalars."
    if (n!=floor(n)) or (m!=floor(m)):
        raise ValueError, "Modes must be integers."
    if (n-m > 199):
        raise ValueError, "Difference between n and m is too large."
    maxL = n-m+1
    return specfun.segv(m,n,c,1)[1][:maxL]

def obl_cv_seq(m,n,c):
    """Compute a sequence of characteristic values for the oblate
    spheroidal wave functions for mode m and n'=m..n and spheroidal
    parameter c.
    """
    if not (isscalar(m) and isscalar(n) and isscalar(c)):
        raise ValueError, "Arguments must be scalars."
    if (n!=floor(n)) or (m!=floor(m)):
        raise ValueError, "Modes must be integers."
    if (n-m > 199):
        raise ValueError, "Difference between n and m is too large."
    maxL = n-m+1
    return specfun.segv(m,n,c,-1)[1][:maxL]

def agm(a,b):
    """Arithmetic, Geometric Mean

    Start with a_0=a and b_0=b and iteratively compute

    a_{n+1} = (a_n+b_n)/2
    b_{n+1} = sqrt(a_n*b_n)

    until a_n=b_n.   The result is agm(a,b)

    agm(a,b)=agm(b,a)
    agm(a,a) = a
    min(a,b) < agm(a,b) < max(a,b)
    """
    res1 = a+b+0.0
    res2 = a-b
    k = res2 / res1
    return res1*pi/4/ellipk(k**2)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.