test_distance.py :  » Math » SciPy » scipy » scipy » spatial » tests » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » SciPy 
SciPy » scipy » scipy » spatial » tests » test_distance.py
#! /usr/bin/env python
#
# Author: Damian Eads
# Date: April 17, 2008
#
# Copyright (C) 2008 Damian Eads
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
#    copyright notice, this list of conditions and the following
#    disclaimer in the documentation and/or other materials provided
#    with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
#    products derived from this software without specific prior
#    written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


import os.path

import numpy as np
from numpy.testing import *
from scipy.spatial.distance import squareform,pdist,cdist,matching,\
                                   jaccard, dice, sokalsneath, rogerstanimoto, \
                                   russellrao, yule, num_obs_y, num_obs_dm, \
                                   is_valid_dm, is_valid_y

_filenames = ["iris.txt",
              "cdist-X1.txt",
              "cdist-X2.txt",
              "pdist-hamming-ml.txt",
              "pdist-boolean-inp.txt",
              "pdist-jaccard-ml.txt",
              "pdist-cityblock-ml-iris.txt",
              "pdist-minkowski-3.2-ml-iris.txt",
              "pdist-cityblock-ml.txt",
              "pdist-correlation-ml-iris.txt",
              "pdist-minkowski-5.8-ml-iris.txt",
              "pdist-correlation-ml.txt",
              "pdist-minkowski-3.2-ml.txt",
              "pdist-cosine-ml-iris.txt",
              "pdist-seuclidean-ml-iris.txt",
              "pdist-cosine-ml.txt",
              "pdist-seuclidean-ml.txt",
              "pdist-double-inp.txt",
              "pdist-spearman-ml.txt",
              "pdist-euclidean-ml.txt",
              "pdist-euclidean-ml-iris.txt",
              "pdist-chebychev-ml.txt",
              "pdist-chebychev-ml-iris.txt",
              "random-bool-data.txt"]

_tdist = np.array([[0,    662,  877,  255,  412,  996],
                      [662,  0,    295,  468,  268,  400],
                      [877,  295,  0,    754,  564,  138],
                      [255,  468,  754,  0,    219,  869],
                      [412,  268,  564,  219,  0,    669],
                      [996,  400,  138,  869,  669,  0  ]], dtype='double')

_ytdist = squareform(_tdist)

# A hashmap of expected output arrays for the tests. These arrays
# come from a list of text files, which are read prior to testing.

eo = {}

def load_testing_files():
    "Loading test data files for the scipy.spatial.distance tests."
    for fn in _filenames:
        name = fn.replace(".txt", "").replace("-ml", "")
        fqfn = os.path.join(os.path.dirname(__file__), fn)
        eo[name] = np.loadtxt(open(fqfn))
        #print "%s: %s   %s" % (name, str(eo[name].shape), str(eo[name].dtype))
    eo['pdist-boolean-inp'] = np.bool_(eo['pdist-boolean-inp'])

load_testing_files()

#print eo.keys()


#print np.abs(Y_test2 - Y_right).max()
#print np.abs(Y_test1 - Y_right).max()

class TestCdist(TestCase):
    """
    Test suite for the cdist function.
    """

    def test_cdist_euclidean_random(self):
        "Tests cdist(X, 'euclidean') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = cdist(X1, X2, 'euclidean')
        Y2 = cdist(X1, X2, 'test_euclidean')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))
        
    def test_cdist_euclidean_random_unicode(self):
        "Tests cdist(X, u'euclidean') using unicode metric string"
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = cdist(X1, X2, u'euclidean')
        Y2 = cdist(X1, X2, u'test_euclidean')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))
        
    def test_cdist_sqeuclidean_random(self):
        "Tests cdist(X, 'sqeuclidean') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = cdist(X1, X2, 'sqeuclidean')
        Y2 = cdist(X1, X2, 'test_sqeuclidean')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_cityblock_random(self):
        "Tests cdist(X, 'cityblock') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = cdist(X1, X2, 'cityblock')
        Y2 = cdist(X1, X2, 'test_cityblock')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_hamming_double_random(self):
        "Tests cdist(X, 'hamming') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = cdist(X1, X2, 'hamming')
        Y2 = cdist(X1, X2, 'test_hamming')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_hamming_bool_random(self):
        "Tests cdist(X, 'hamming') on random boolean data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1'] < 0.5
        X2 = eo['cdist-X2'] < 0.5
        Y1 = cdist(X1, X2, 'hamming')
        Y2 = cdist(X1, X2, 'test_hamming')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_jaccard_double_random(self):
        "Tests cdist(X, 'jaccard') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = cdist(X1, X2, 'jaccard')
        Y2 = cdist(X1, X2, 'test_jaccard')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_jaccard_bool_random(self):
        "Tests cdist(X, 'jaccard') on random boolean data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1'] < 0.5
        X2 = eo['cdist-X2'] < 0.5
        Y1 = cdist(X1, X2, 'jaccard')
        Y2 = cdist(X1, X2, 'test_jaccard')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_chebychev_random(self):
        "Tests cdist(X, 'chebychev') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = cdist(X1, X2, 'chebychev')
        Y2 = cdist(X1, X2, 'test_chebychev')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_minkowski_random_p3d8(self):
        "Tests cdist(X, 'minkowski') on random data. (p=3.8)"
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = cdist(X1, X2, 'minkowski', p=3.8)
        Y2 = cdist(X1, X2, 'test_minkowski', p=3.8)
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_minkowski_random_p4d6(self):
        "Tests cdist(X, 'minkowski') on random data. (p=4.6)"
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = cdist(X1, X2, 'minkowski', p=4.6)
        Y2 = cdist(X1, X2, 'test_minkowski', p=4.6)
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_minkowski_random_p1d23(self):
        "Tests cdist(X, 'minkowski') on random data. (p=1.23)"
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = cdist(X1, X2, 'minkowski', p=1.23)
        Y2 = cdist(X1, X2, 'test_minkowski', p=1.23)
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))


    def test_cdist_wminkowski_random_p3d8(self):
        "Tests cdist(X, 'wminkowski') on random data. (p=3.8)"
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        w = 1.0 / X1.std(axis=0)
        Y1 = cdist(X1, X2, 'wminkowski', p=3.8, w=w)
        Y2 = cdist(X1, X2, 'test_wminkowski', p=3.8, w=w)
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_wminkowski_random_p4d6(self):
        "Tests cdist(X, 'wminkowski') on random data. (p=4.6)"
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        w = 1.0 / X1.std(axis=0)
        Y1 = cdist(X1, X2, 'wminkowski', p=4.6, w=w)
        Y2 = cdist(X1, X2, 'test_wminkowski', p=4.6, w=w)
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_wminkowski_random_p1d23(self):
        "Tests cdist(X, 'wminkowski') on random data. (p=1.23)"
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        w = 1.0 / X1.std(axis=0)
        Y1 = cdist(X1, X2, 'wminkowski', p=1.23, w=w)
        Y2 = cdist(X1, X2, 'test_wminkowski', p=1.23, w=w)
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))


    def test_cdist_seuclidean_random(self):
        "Tests cdist(X, 'seuclidean') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = cdist(X1, X2, 'seuclidean')
        Y2 = cdist(X1, X2, 'test_seuclidean')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_sqeuclidean_random(self):
        "Tests cdist(X, 'sqeuclidean') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = cdist(X1, X2, 'sqeuclidean')
        Y2 = cdist(X1, X2, 'test_sqeuclidean')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_cosine_random(self):
        "Tests cdist(X, 'cosine') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = cdist(X1, X2, 'cosine')
        Y2 = cdist(X1, X2, 'test_cosine')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_correlation_random(self):
        "Tests cdist(X, 'correlation') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = cdist(X1, X2, 'correlation')
        Y2 = cdist(X1, X2, 'test_correlation')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_mahalanobis_random(self):
        "Tests cdist(X, 'mahalanobis') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1']
        X2 = eo['cdist-X2']
        Y1 = cdist(X1, X2, 'mahalanobis')
        Y2 = cdist(X1, X2, 'test_mahalanobis')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_canberra_random(self):
        "Tests cdist(X, 'canberra') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1'] < 0.5
        X2 = eo['cdist-X2'] < 0.5
        Y1 = cdist(X1, X2, 'canberra')
        Y2 = cdist(X1, X2, 'test_canberra')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_braycurtis_random(self):
        "Tests cdist(X, 'braycurtis') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1'] < 0.5
        X2 = eo['cdist-X2'] < 0.5
        Y1 = cdist(X1, X2, 'braycurtis')
        Y2 = cdist(X1, X2, 'test_braycurtis')
        if verbose > 2:
            print Y1, Y2
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_yule_random(self):
        "Tests cdist(X, 'yule') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1'] < 0.5
        X2 = eo['cdist-X2'] < 0.5
        Y1 = cdist(X1, X2, 'yule')
        Y2 = cdist(X1, X2, 'test_yule')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_matching_random(self):
        "Tests cdist(X, 'matching') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1'] < 0.5
        X2 = eo['cdist-X2'] < 0.5
        Y1 = cdist(X1, X2, 'matching')
        Y2 = cdist(X1, X2, 'test_matching')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_kulsinski_random(self):
        "Tests cdist(X, 'kulsinski') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1'] < 0.5
        X2 = eo['cdist-X2'] < 0.5
        Y1 = cdist(X1, X2, 'kulsinski')
        Y2 = cdist(X1, X2, 'test_kulsinski')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_dice_random(self):
        "Tests cdist(X, 'dice') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1'] < 0.5
        X2 = eo['cdist-X2'] < 0.5
        Y1 = cdist(X1, X2, 'dice')
        Y2 = cdist(X1, X2, 'test_dice')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_rogerstanimoto_random(self):
        "Tests cdist(X, 'rogerstanimoto') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1'] < 0.5
        X2 = eo['cdist-X2'] < 0.5
        Y1 = cdist(X1, X2, 'rogerstanimoto')
        Y2 = cdist(X1, X2, 'test_rogerstanimoto')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_russellrao_random(self):
        "Tests cdist(X, 'russellrao') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1'] < 0.5
        X2 = eo['cdist-X2'] < 0.5
        Y1 = cdist(X1, X2, 'russellrao')
        Y2 = cdist(X1, X2, 'test_russellrao')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_sokalmichener_random(self):
        "Tests cdist(X, 'sokalmichener') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1'] < 0.5
        X2 = eo['cdist-X2'] < 0.5
        Y1 = cdist(X1, X2, 'sokalmichener')
        Y2 = cdist(X1, X2, 'test_sokalmichener')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

    def test_cdist_sokalsneath_random(self):
        "Tests cdist(X, 'sokalsneath') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X1 = eo['cdist-X1'] < 0.5
        X2 = eo['cdist-X2'] < 0.5
        Y1 = cdist(X1, X2, 'sokalsneath')
        Y2 = cdist(X1, X2, 'test_sokalsneath')
        if verbose > 2:
            print (Y1-Y2).max()
        self.failUnless(within_tol(Y1, Y2, eps))

class TestPdist(TestCase):
    """
    Test suite for the pdist function.
    """

    ################### pdist: euclidean
    def test_pdist_euclidean_random(self):
        "Tests pdist(X, 'euclidean') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-euclidean']

        Y_test1 = pdist(X, 'euclidean')
        self.failUnless(within_tol(Y_test1, Y_right, eps))
        
    def test_pdist_euclidean_random(self):
        "Tests pdist(X, 'euclidean') with unicode metric string"
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-euclidean']

        Y_test1 = pdist(X, u'euclidean')
        self.failUnless(within_tol(Y_test1, Y_right, eps))
        
    def test_pdist_euclidean_random_float32(self):
        "Tests pdist(X, 'euclidean') on random data (float32)."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['pdist-double-inp'])
        Y_right = eo['pdist-euclidean']

        Y_test1 = pdist(X, 'euclidean')
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_euclidean_random_nonC(self):
        "Tests pdist(X, 'test_euclidean') [the non-C implementation] on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-euclidean']
        Y_test2 = pdist(X, 'test_euclidean')
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    def test_pdist_euclidean_iris_double(self):
        "Tests pdist(X, 'euclidean') on the Iris data set."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-euclidean-iris']

        Y_test1 = pdist(X, 'euclidean')
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_euclidean_iris_float32(self):
        "Tests pdist(X, 'euclidean') on the Iris data set. (float32)"
        eps = 1e-06
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['iris'])
        Y_right = eo['pdist-euclidean-iris']

        Y_test1 = pdist(X, 'euclidean')
        if verbose > 2:
            print np.abs(Y_right - Y_test1).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_euclidean_iris_nonC(self):
        "Tests pdist(X, 'test_euclidean') [the non-C implementation] on the Iris data set."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-euclidean-iris']
        Y_test2 = pdist(X, 'test_euclidean')
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    ################### pdist: seuclidean
    def test_pdist_seuclidean_random(self):
        "Tests pdist(X, 'seuclidean') on random data."
        eps = 1e-05
        # Get the data: the input matrix and the right output.
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-seuclidean']

        Y_test1 = pdist(X, 'seuclidean')
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_seuclidean_random_float32(self):
        "Tests pdist(X, 'seuclidean') on random data (float32)."
        eps = 1e-05
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['pdist-double-inp'])
        Y_right = eo['pdist-seuclidean']

        Y_test1 = pdist(X, 'seuclidean')
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_seuclidean_random_nonC(self):
        "Tests pdist(X, 'test_sqeuclidean') [the non-C implementation] on random data."
        eps = 1e-05
        # Get the data: the input matrix and the right output.
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-seuclidean']
        Y_test2 = pdist(X, 'test_sqeuclidean')
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    def test_pdist_seuclidean_iris(self):
        "Tests pdist(X, 'seuclidean') on the Iris data set."
        eps = 1e-05
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-seuclidean-iris']

        Y_test1 = pdist(X, 'seuclidean')
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_seuclidean_iris_float32(self):
        "Tests pdist(X, 'seuclidean') on the Iris data set (float32)."
        eps = 1e-05
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['iris'])
        Y_right = eo['pdist-seuclidean-iris']

        Y_test1 = pdist(X, 'seuclidean')
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_seuclidean_iris_nonC(self):
        "Tests pdist(X, 'test_seuclidean') [the non-C implementation] on the Iris data set."
        eps = 1e-05
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-seuclidean-iris']
        Y_test2 = pdist(X, 'test_sqeuclidean')
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    ################### pdist: cosine
    def test_pdist_cosine_random(self):
        "Tests pdist(X, 'cosine') on random data."
        eps = 1e-08
        # Get the data: the input matrix and the right output.
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-cosine']
        Y_test1 = pdist(X, 'cosine')
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_cosine_random_float32(self):
        "Tests pdist(X, 'cosine') on random data. (float32)"
        eps = 1e-08
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['pdist-double-inp'])
        Y_right = eo['pdist-cosine']

        Y_test1 = pdist(X, 'cosine')
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_cosine_random_nonC(self):
        "Tests pdist(X, 'test_cosine') [the non-C implementation] on random data."
        eps = 1e-08
        # Get the data: the input matrix and the right output.
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-cosine']
        Y_test2 = pdist(X, 'test_cosine')
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    def test_pdist_cosine_iris(self):
        "Tests pdist(X, 'cosine') on the Iris data set."
        eps = 1e-08
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-cosine-iris']

        Y_test1 = pdist(X, 'cosine')
        self.failUnless(within_tol(Y_test1, Y_right, eps))
        #print "cosine-iris", np.abs(Y_test1 - Y_right).max()

    def test_pdist_cosine_iris_float32(self):
        "Tests pdist(X, 'cosine') on the Iris data set."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['iris'])
        Y_right = eo['pdist-cosine-iris']

        Y_test1 = pdist(X, 'cosine')
        if verbose > 2:
            print np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))
        #print "cosine-iris", np.abs(Y_test1 - Y_right).max()

    def test_pdist_cosine_iris_nonC(self):
        "Tests pdist(X, 'test_cosine') [the non-C implementation] on the Iris data set."
        eps = 1e-08
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-cosine-iris']
        Y_test2 = pdist(X, 'test_cosine')
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    ################### pdist: cityblock
    def test_pdist_cityblock_random(self):
        "Tests pdist(X, 'cityblock') on random data."
        eps = 1e-06
        # Get the data: the input matrix and the right output.
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-cityblock']
        Y_test1 = pdist(X, 'cityblock')
        #print "cityblock", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_cityblock_random_float32(self):
        "Tests pdist(X, 'cityblock') on random data. (float32)"
        eps = 1e-06
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['pdist-double-inp'])
        Y_right = eo['pdist-cityblock']
        Y_test1 = pdist(X, 'cityblock')
        #print "cityblock", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_cityblock_random_nonC(self):
        "Tests pdist(X, 'test_cityblock') [the non-C implementation] on random data."
        eps = 1e-06
        # Get the data: the input matrix and the right output.
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-cityblock']
        Y_test2 = pdist(X, 'test_cityblock')
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    def test_pdist_cityblock_iris(self):
        "Tests pdist(X, 'cityblock') on the Iris data set."
        eps = 1e-14
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-cityblock-iris']

        Y_test1 = pdist(X, 'cityblock')
        self.failUnless(within_tol(Y_test1, Y_right, eps))
        #print "cityblock-iris", np.abs(Y_test1 - Y_right).max()

    def test_pdist_cityblock_iris_float32(self):
        "Tests pdist(X, 'cityblock') on the Iris data set. (float32)"
        eps = 1e-06
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['iris'])
        Y_right = eo['pdist-cityblock-iris']

        Y_test1 = pdist(X, 'cityblock')
        if verbose > 2:
            print "cityblock-iris-float32", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_cityblock_iris_nonC(self):
        "Tests pdist(X, 'test_cityblock') [the non-C implementation] on the Iris data set."
        eps = 1e-14
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-cityblock-iris']
        Y_test2 = pdist(X, 'test_cityblock')
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    ################### pdist: correlation
    def test_pdist_correlation_random(self):
        "Tests pdist(X, 'correlation') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-correlation']

        Y_test1 = pdist(X, 'correlation')
        #print "correlation", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_correlation_random_float32(self):
        "Tests pdist(X, 'correlation') on random data. (float32)"
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['pdist-double-inp'])
        Y_right = eo['pdist-correlation']

        Y_test1 = pdist(X, 'correlation')
        #print "correlation", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_correlation_random_nonC(self):
        "Tests pdist(X, 'test_correlation') [the non-C implementation] on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-correlation']
        Y_test2 = pdist(X, 'test_correlation')
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    def test_pdist_correlation_iris(self):
        "Tests pdist(X, 'correlation') on the Iris data set."
        eps = 1e-08
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-correlation-iris']

        Y_test1 = pdist(X, 'correlation')
        #print "correlation-iris", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_correlation_iris_float32(self):
        "Tests pdist(X, 'correlation') on the Iris data set. (float32)"
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = np.float32(eo['pdist-correlation-iris'])

        Y_test1 = pdist(X, 'correlation')
        if verbose > 2:
            print "correlation-iris", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_correlation_iris_nonC(self):
        "Tests pdist(X, 'test_correlation') [the non-C implementation] on the Iris data set."
        eps = 1e-08
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-correlation-iris']
        Y_test2 = pdist(X, 'test_correlation')
        #print "test-correlation-iris", np.abs(Y_test2 - Y_right).max()
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    ################# minkowski

    def test_pdist_minkowski_random(self):
        "Tests pdist(X, 'minkowski') on random data."
        eps = 1e-05
        # Get the data: the input matrix and the right output.
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-minkowski-3.2']

        Y_test1 = pdist(X, 'minkowski', 3.2)
        #print "minkowski", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_minkowski_random_float32(self):
        "Tests pdist(X, 'minkowski') on random data. (float32)"
        eps = 1e-05
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['pdist-double-inp'])
        Y_right = eo['pdist-minkowski-3.2']

        Y_test1 = pdist(X, 'minkowski', 3.2)
        #print "minkowski", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_minkowski_random_nonC(self):
        "Tests pdist(X, 'test_minkowski') [the non-C implementation] on random data."
        eps = 1e-05
        # Get the data: the input matrix and the right output.
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-minkowski-3.2']
        Y_test2 = pdist(X, 'test_minkowski', 3.2)
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    def test_pdist_minkowski_iris(self):
        "Tests pdist(X, 'minkowski') on iris data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-minkowski-3.2-iris']
        Y_test1 = pdist(X, 'minkowski', 3.2)
        #print "minkowski-iris-3.2", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_minkowski_iris_float32(self):
        "Tests pdist(X, 'minkowski') on iris data. (float32)"
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['iris'])
        Y_right = eo['pdist-minkowski-3.2-iris']
        Y_test1 = pdist(X, 'minkowski', 3.2)
        #print "minkowski-iris-3.2", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_minkowski_iris_nonC(self):
        "Tests pdist(X, 'test_minkowski') [the non-C implementation] on iris data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-minkowski-3.2-iris']
        Y_test2 = pdist(X, 'test_minkowski', 3.2)
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    def test_pdist_minkowski_iris(self):
        "Tests pdist(X, 'minkowski') on iris data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-minkowski-5.8-iris']
        Y_test1 = pdist(X, 'minkowski', 5.8)
        #print "minkowski-iris-5.8", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_minkowski_iris_float32(self):
        "Tests pdist(X, 'minkowski') on iris data. (float32)"
        eps = 1e-06
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['iris'])
        Y_right = eo['pdist-minkowski-5.8-iris']

        Y_test1 = pdist(X, 'minkowski', 5.8)
        if verbose > 2:
            print "minkowski-iris-5.8", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_minkowski_iris_nonC(self):
        "Tests pdist(X, 'test_minkowski') [the non-C implementation] on iris data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-minkowski-5.8-iris']
        Y_test2 = pdist(X, 'test_minkowski', 5.8)
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    ################### pdist: hamming
    def test_pdist_hamming_random(self):
        "Tests pdist(X, 'hamming') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = eo['pdist-boolean-inp']
        Y_right = eo['pdist-hamming']

        Y_test1 = pdist(X, 'hamming')
        #print "hamming", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_hamming_random_float32(self):
        "Tests pdist(X, 'hamming') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-hamming']

        Y_test1 = pdist(X, 'hamming')
        #print "hamming", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_hamming_random_nonC(self):
        "Tests pdist(X, 'test_hamming') [the non-C implementation] on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = eo['pdist-boolean-inp']
        Y_right = eo['pdist-hamming']
        Y_test2 = pdist(X, 'test_hamming')
        #print "test-hamming", np.abs(Y_test2 - Y_right).max()
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    ################### pdist: hamming (double)
    def test_pdist_dhamming_random(self):
        "Tests pdist(X, 'hamming') on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = np.float64(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-hamming']
        Y_test1 = pdist(X, 'hamming')
        #print "hamming", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_dhamming_random_float32(self):
        "Tests pdist(X, 'hamming') on random data. (float32)"
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-hamming']
        Y_test1 = pdist(X, 'hamming')
        #print "hamming", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_dhamming_random_nonC(self):
        "Tests pdist(X, 'test_hamming') [the non-C implementation] on random data."
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = np.float64(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-hamming']
        Y_test2 = pdist(X, 'test_hamming')
        #print "test-hamming", np.abs(Y_test2 - Y_right).max()
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    ################### pdist: jaccard
    def test_pdist_jaccard_random(self):
        "Tests pdist(X, 'jaccard') on random data."
        eps = 1e-08
        # Get the data: the input matrix and the right output.
        X = eo['pdist-boolean-inp']
        Y_right = eo['pdist-jaccard']

        Y_test1 = pdist(X, 'jaccard')
        #print "jaccard", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_jaccard_random_float32(self):
        "Tests pdist(X, 'jaccard') on random data. (float32)"
        eps = 1e-08
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-jaccard']

        Y_test1 = pdist(X, 'jaccard')
        #print "jaccard", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_jaccard_random_nonC(self):
        "Tests pdist(X, 'test_jaccard') [the non-C implementation] on random data."
        eps = 1e-08
        # Get the data: the input matrix and the right output.
        X = eo['pdist-boolean-inp']
        Y_right = eo['pdist-jaccard']
        Y_test2 = pdist(X, 'test_jaccard')
        #print "test-jaccard", np.abs(Y_test2 - Y_right).max()
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    ################### pdist: jaccard (double)
    def test_pdist_djaccard_random(self):
        "Tests pdist(X, 'jaccard') on random data."
        eps = 1e-08
        # Get the data: the input matrix and the right output.
        X = np.float64(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-jaccard']

        Y_test1 = pdist(X, 'jaccard')
        #print "jaccard", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_djaccard_random_float32(self):
        "Tests pdist(X, 'jaccard') on random data. (float32)"
        eps = 1e-08
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-jaccard']

        Y_test1 = pdist(X, 'jaccard')
        #print "jaccard", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_djaccard_random_nonC(self):
        "Tests pdist(X, 'test_jaccard') [the non-C implementation] on random data."
        eps = 1e-08
        # Get the data: the input matrix and the right output.
        X = np.float64(eo['pdist-boolean-inp'])
        Y_right = eo['pdist-jaccard']
        Y_test2 = pdist(X, 'test_jaccard')
        #print "test-jaccard", np.abs(Y_test2 - Y_right).max()
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    ################### pdist: chebychev
    def test_pdist_chebychev_random(self):
        "Tests pdist(X, 'chebychev') on random data."
        eps = 1e-08
        # Get the data: the input matrix and the right output.
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-chebychev']

        Y_test1 = pdist(X, 'chebychev')
        #print "chebychev", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_chebychev_random_float32(self):
        "Tests pdist(X, 'chebychev') on random data. (float32)"
        eps = 1e-07
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['pdist-double-inp'])
        Y_right = eo['pdist-chebychev']

        Y_test1 = pdist(X, 'chebychev')
        if verbose > 2:
            print "chebychev", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_chebychev_random_nonC(self):
        "Tests pdist(X, 'test_chebychev') [the non-C implementation] on random data."
        eps = 1e-08
        # Get the data: the input matrix and the right output.
        X = eo['pdist-double-inp']
        Y_right = eo['pdist-chebychev']
        Y_test2 = pdist(X, 'test_chebychev')
        #print "test-chebychev", np.abs(Y_test2 - Y_right).max()
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    def test_pdist_chebychev_iris(self):
        "Tests pdist(X, 'chebychev') on the Iris data set."
        eps = 1e-15
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-chebychev-iris']
        Y_test1 = pdist(X, 'chebychev')
        #print "chebychev-iris", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_chebychev_iris_float32(self):
        "Tests pdist(X, 'chebychev') on the Iris data set. (float32)"
        eps = 1e-06
        # Get the data: the input matrix and the right output.
        X = np.float32(eo['iris'])
        Y_right = eo['pdist-chebychev-iris']
        Y_test1 = pdist(X, 'chebychev')
        if verbose > 2:
            print "chebychev-iris", np.abs(Y_test1 - Y_right).max()
        self.failUnless(within_tol(Y_test1, Y_right, eps))

    def test_pdist_chebychev_iris_nonC(self):
        "Tests pdist(X, 'test_chebychev') [the non-C implementation] on the Iris data set."
        eps = 1e-15
        # Get the data: the input matrix and the right output.
        X = eo['iris']
        Y_right = eo['pdist-chebychev-iris']
        Y_test2 = pdist(X, 'test_chebychev')
        #print "test-chebychev-iris", np.abs(Y_test2 - Y_right).max()
        self.failUnless(within_tol(Y_test2, Y_right, eps))

    def test_pdist_matching_mtica1(self):
        "Tests matching(*,*) with mtica example #1 (nums)."
        m = matching(np.array([1, 0, 1, 1, 0]),
                     np.array([1, 1, 0, 1, 1]))
        m2 = matching(np.array([1, 0, 1, 1, 0], dtype=np.bool),
                      np.array([1, 1, 0, 1, 1], dtype=np.bool))
        self.failUnless(np.abs(m - 0.6) <= 1e-10)
        self.failUnless(np.abs(m2 - 0.6) <= 1e-10)

    def test_pdist_matching_mtica2(self):
        "Tests matching(*,*) with mtica example #2."
        m = matching(np.array([1, 0, 1]),
                     np.array([1, 1, 0]))
        m2 = matching(np.array([1, 0, 1], dtype=np.bool),
                      np.array([1, 1, 0], dtype=np.bool))
        self.failUnless(np.abs(m - (2.0/3.0)) <= 1e-10)
        self.failUnless(np.abs(m2 - (2.0/3.0)) <= 1e-10)

    def test_pdist_matching_match(self):
        "Tests pdist(X, 'matching') to see if the two implementations match on random boolean input data."
        D = eo['random-bool-data']
        B = np.bool_(D)
        if verbose > 2:
            print B.shape, B.dtype
        eps = 1e-10
        y1 = pdist(B, "matching")
        y2 = pdist(B, "test_matching")
        y3 = pdist(D, "test_matching")
        if verbose > 2:
            print np.abs(y1-y2).max()
            print np.abs(y1-y3).max()
        self.failUnless(within_tol(y1, y2, eps))
        self.failUnless(within_tol(y2, y3, eps))

    def test_pdist_jaccard_mtica1(self):
        "Tests jaccard(*,*) with mtica example #1."
        m = jaccard(np.array([1, 0, 1, 1, 0]),
                    np.array([1, 1, 0, 1, 1]))
        m2 = jaccard(np.array([1, 0, 1, 1, 0], dtype=np.bool),
                     np.array([1, 1, 0, 1, 1], dtype=np.bool))
        self.failUnless(np.abs(m - 0.6) <= 1e-10)
        self.failUnless(np.abs(m2 - 0.6) <= 1e-10)

    def test_pdist_jaccard_mtica2(self):
        "Tests jaccard(*,*) with mtica example #2."
        m = jaccard(np.array([1, 0, 1]),
                    np.array([1, 1, 0]))
        m2 = jaccard(np.array([1, 0, 1], dtype=np.bool),
                     np.array([1, 1, 0], dtype=np.bool))
        self.failUnless(np.abs(m - (2.0/3.0)) <= 1e-10)
        self.failUnless(np.abs(m2 - (2.0/3.0)) <= 1e-10)

    def test_pdist_jaccard_match(self):
        "Tests pdist(X, 'jaccard') to see if the two implementations match on random double input data."
        D = eo['random-bool-data']
        if verbose > 2:
            print D.shape, D.dtype
        eps = 1e-10
        y1 = pdist(D, "jaccard")
        y2 = pdist(D, "test_jaccard")
        y3 = pdist(np.bool_(D), "test_jaccard")
        if verbose > 2:
            print np.abs(y1-y2).max()
            print np.abs(y2-y3).max()
        self.failUnless(within_tol(y1, y2, eps))
        self.failUnless(within_tol(y2, y3, eps))

    def test_pdist_yule_mtica1(self):
        "Tests yule(*,*) with mtica example #1."
        m = yule(np.array([1, 0, 1, 1, 0]),
                 np.array([1, 1, 0, 1, 1]))
        m2 = yule(np.array([1, 0, 1, 1, 0], dtype=np.bool),
                  np.array([1, 1, 0, 1, 1], dtype=np.bool))
        if verbose > 2:
            print m
        self.failUnless(np.abs(m - 2.0) <= 1e-10)
        self.failUnless(np.abs(m2 - 2.0) <= 1e-10)

    def test_pdist_yule_mtica2(self):
        "Tests yule(*,*) with mtica example #2."
        m = yule(np.array([1, 0, 1]),
                 np.array([1, 1, 0]))
        m2 = yule(np.array([1, 0, 1], dtype=np.bool),
                  np.array([1, 1, 0], dtype=np.bool))
        if verbose > 2:
            print m
        self.failUnless(np.abs(m - 2.0) <= 1e-10)
        self.failUnless(np.abs(m2 - 2.0) <= 1e-10)

    def test_pdist_yule_match(self):
        "Tests pdist(X, 'yule') to see if the two implementations match on random double input data."
        D = eo['random-bool-data']
        if verbose > 2:
            print D.shape, D.dtype
        eps = 1e-10
        y1 = pdist(D, "yule")
        y2 = pdist(D, "test_yule")
        y3 = pdist(np.bool_(D), "test_yule")
        if verbose > 2:
            print np.abs(y1-y2).max()
            print np.abs(y2-y3).max()
        self.failUnless(within_tol(y1, y2, eps))
        self.failUnless(within_tol(y2, y3, eps))

    def test_pdist_dice_mtica1(self):
        "Tests dice(*,*) with mtica example #1."
        m = dice(np.array([1, 0, 1, 1, 0]),
                 np.array([1, 1, 0, 1, 1]))
        m2 = dice(np.array([1, 0, 1, 1, 0], dtype=np.bool),
                  np.array([1, 1, 0, 1, 1], dtype=np.bool))
        if verbose > 2:
            print m
        self.failUnless(np.abs(m - (3.0/7.0)) <= 1e-10)
        self.failUnless(np.abs(m2 - (3.0/7.0)) <= 1e-10)

    def test_pdist_dice_mtica2(self):
        "Tests dice(*,*) with mtica example #2."
        m = dice(np.array([1, 0, 1]),
                 np.array([1, 1, 0]))
        m2 = dice(np.array([1, 0, 1], dtype=np.bool),
                  np.array([1, 1, 0], dtype=np.bool))
        if verbose > 2:
            print m
        self.failUnless(np.abs(m - 0.5) <= 1e-10)
        self.failUnless(np.abs(m2 - 0.5) <= 1e-10)

    def test_pdist_dice_match(self):
        "Tests pdist(X, 'dice') to see if the two implementations match on random double input data."
        D = eo['random-bool-data']
        if verbose > 2:
            print D.shape, D.dtype
        eps = 1e-10
        y1 = pdist(D, "dice")
        y2 = pdist(D, "test_dice")
        y3 = pdist(D, "test_dice")
        if verbose > 2:
            print np.abs(y1-y2).max()
            print np.abs(y2-y3).max()
        self.failUnless(within_tol(y1, y2, eps))
        self.failUnless(within_tol(y2, y3, eps))

    def test_pdist_sokalsneath_mtica1(self):
        "Tests sokalsneath(*,*) with mtica example #1."
        m = sokalsneath(np.array([1, 0, 1, 1, 0]),
                        np.array([1, 1, 0, 1, 1]))
        m2 = sokalsneath(np.array([1, 0, 1, 1, 0], dtype=np.bool),
                         np.array([1, 1, 0, 1, 1], dtype=np.bool))
        if verbose > 2:
            print m
        self.failUnless(np.abs(m - (3.0/4.0)) <= 1e-10)
        self.failUnless(np.abs(m2 - (3.0/4.0)) <= 1e-10)

    def test_pdist_sokalsneath_mtica2(self):
        "Tests sokalsneath(*,*) with mtica example #2."
        m = sokalsneath(np.array([1, 0, 1]),
                        np.array([1, 1, 0]))
        m2 = sokalsneath(np.array([1, 0, 1], dtype=np.bool),
                         np.array([1, 1, 0], dtype=np.bool))
        if verbose > 2:
            print m
        self.failUnless(np.abs(m - (4.0/5.0)) <= 1e-10)
        self.failUnless(np.abs(m2 - (4.0/5.0)) <= 1e-10)

    def test_pdist_sokalsneath_match(self):
        "Tests pdist(X, 'sokalsneath') to see if the two implementations match on random double input data."
        D = eo['random-bool-data']
        if verbose > 2:
            print D.shape, D.dtype
        eps = 1e-10
        y1 = pdist(D, "sokalsneath")
        y2 = pdist(D, "test_sokalsneath")
        y3 = pdist(np.bool_(D), "test_sokalsneath")
        if verbose > 2:
            print np.abs(y1-y2).max()
            print np.abs(y2-y3).max()
        self.failUnless(within_tol(y1, y2, eps))
        self.failUnless(within_tol(y2, y3, eps))

    def test_pdist_rogerstanimoto_mtica1(self):
        "Tests rogerstanimoto(*,*) with mtica example #1."
        m = rogerstanimoto(np.array([1, 0, 1, 1, 0]),
                           np.array([1, 1, 0, 1, 1]))
        m2 = rogerstanimoto(np.array([1, 0, 1, 1, 0], dtype=np.bool),
                            np.array([1, 1, 0, 1, 1], dtype=np.bool))
        if verbose > 2:
            print m
        self.failUnless(np.abs(m - (3.0/4.0)) <= 1e-10)
        self.failUnless(np.abs(m2 - (3.0/4.0)) <= 1e-10)

    def test_pdist_rogerstanimoto_mtica2(self):
        "Tests rogerstanimoto(*,*) with mtica example #2."
        m = rogerstanimoto(np.array([1, 0, 1]),
                           np.array([1, 1, 0]))
        m2 = rogerstanimoto(np.array([1, 0, 1], dtype=np.bool),
                            np.array([1, 1, 0], dtype=np.bool))
        if verbose > 2:
            print m
        self.failUnless(np.abs(m - (4.0/5.0)) <= 1e-10)
        self.failUnless(np.abs(m2 - (4.0/5.0)) <= 1e-10)

    def test_pdist_rogerstanimoto_match(self):
        "Tests pdist(X, 'rogerstanimoto') to see if the two implementations match on random double input data."
        D = eo['random-bool-data']
        if verbose > 2:
            print D.shape, D.dtype
        eps = 1e-10
        y1 = pdist(D, "rogerstanimoto")
        y2 = pdist(D, "test_rogerstanimoto")
        y3 = pdist(np.bool_(D), "test_rogerstanimoto")
        if verbose > 2:
            print np.abs(y1-y2).max()
            print np.abs(y2-y3).max()
        self.failUnless(within_tol(y1, y2, eps))
        self.failUnless(within_tol(y2, y3, eps))

    def test_pdist_russellrao_mtica1(self):
        "Tests russellrao(*,*) with mtica example #1."
        m = russellrao(np.array([1, 0, 1, 1, 0]),
                       np.array([1, 1, 0, 1, 1]))
        m2 = russellrao(np.array([1, 0, 1, 1, 0], dtype=np.bool),
                        np.array([1, 1, 0, 1, 1], dtype=np.bool))
        if verbose > 2:
            print m
        self.failUnless(np.abs(m - (3.0/5.0)) <= 1e-10)
        self.failUnless(np.abs(m2 - (3.0/5.0)) <= 1e-10)

    def test_pdist_russellrao_mtica2(self):
        "Tests russellrao(*,*) with mtica example #2."
        m = russellrao(np.array([1, 0, 1]),
                       np.array([1, 1, 0]))
        m2 = russellrao(np.array([1, 0, 1], dtype=np.bool),
                        np.array([1, 1, 0], dtype=np.bool))
        if verbose > 2:
            print m
        self.failUnless(np.abs(m - (2.0/3.0)) <= 1e-10)
        self.failUnless(np.abs(m2 - (2.0/3.0)) <= 1e-10)

    def test_pdist_russellrao_match(self):
        "Tests pdist(X, 'russellrao') to see if the two implementations match on random double input data."
        D = eo['random-bool-data']
        if verbose > 2:
            print D.shape, D.dtype
        eps = 1e-10
        y1 = pdist(D, "russellrao")
        y2 = pdist(D, "test_russellrao")
        y3 = pdist(np.bool_(D), "test_russellrao")
        if verbose > 2:
            print np.abs(y1-y2).max()
            print np.abs(y2-y3).max()
        self.failUnless(within_tol(y1, y2, eps))
        self.failUnless(within_tol(y2, y3, eps))

    def test_pdist_sokalmichener_match(self):
        "Tests pdist(X, 'sokalmichener') to see if the two implementations match on random double input data."
        D = eo['random-bool-data']
        if verbose > 2:
            print D.shape, D.dtype
        eps = 1e-10
        y1 = pdist(D, "sokalmichener")
        y2 = pdist(D, "test_sokalmichener")
        y3 = pdist(np.bool_(D), "test_sokalmichener")
        if verbose > 2:
            print np.abs(y1-y2).max()
            print np.abs(y2-y3).max()
        self.failUnless(within_tol(y1, y2, eps))
        self.failUnless(within_tol(y2, y3, eps))

    def test_pdist_kulsinski_match(self):
        "Tests pdist(X, 'kulsinski') to see if the two implementations match on random double input data."
        D = eo['random-bool-data']
        if verbose > 2:
            print D.shape, D.dtype
        eps = 1e-10
        y1 = pdist(D, "kulsinski")
        y2 = pdist(D, "test_kulsinski")
        y3 = pdist(np.bool_(D), "test_kulsinski")
        if verbose > 2:
            print np.abs(y1-y2).max()
        self.failUnless(within_tol(y1, y2, eps))

    def test_pdist_canberra_match(self):
        "Tests pdist(X, 'canberra') to see if the two implementations match on the Iris data set."
        D = eo['iris']
        if verbose > 2:
            print D.shape, D.dtype
        eps = 1e-10
        y1 = pdist(D, "canberra")
        y2 = pdist(D, "test_canberra")
        if verbose > 2:
            print np.abs(y1-y2).max()
        self.failUnless(within_tol(y1, y2, eps))

    def test_pdist_canberra_ticket_711(self):
        "Tests pdist(X, 'canberra') to see if Canberra gives the right result as reported in Scipy bug report 711."
        eps = 1e-8
        pdist_y = pdist(([3.3], [3.4]), "canberra")
        right_y = 0.01492537
        if verbose > 2:
            print np.abs(pdist_y-right_y).max()
        self.failUnless(within_tol(pdist_y, right_y, eps))

def within_tol(a, b, tol):
    return np.abs(a - b).max() < tol


class TestSquareForm(TestCase):

    ################### squareform
    def test_squareform_empty_matrix(self):
        "Tests squareform on an empty matrix."
        A = np.zeros((0,0))
        rA = squareform(np.array(A, dtype='double'))
        self.failUnless(rA.shape == (0,))

    def test_squareform_empty_vector(self):
        "Tests squareform on an empty vector."
        v = np.zeros((0,))
        rv = squareform(np.array(v, dtype='double'))
        self.failUnless(rv.shape == (1,1))
        self.failUnless(rv[0, 0] == 0)

    def test_squareform_1by1_matrix(self):
        "Tests squareform on a 1x1 matrix."
        A = np.zeros((1,1))
        rA = squareform(np.array(A, dtype='double'))
        self.failUnless(rA.shape == (0,))

    def test_squareform_one_vector(self):
        "Tests squareform on a 1-D array, length=1."
        v = np.ones((1,)) * 8.3
        rv = squareform(np.array(v, dtype='double'))
        self.failUnless(rv.shape == (2,2))
        self.failUnless(rv[0,1] == 8.3)
        self.failUnless(rv[1,0] == 8.3)

    def test_squareform_2by2_matrix(self):
        "Tests squareform on a 2x2 matrix."
        A = np.zeros((2,2))
        A[0,1]=0.8
        A[1,0]=0.8
        rA = squareform(np.array(A, dtype='double'))
        self.failUnless(rA.shape == (1,))
        self.failUnless(rA[0] == 0.8)

    def test_squareform_multi_matrix(self):
        "Tests squareform on a square matrices of multiple sizes."
        for n in xrange(2, 5):
            yield self.check_squareform_multi_matrix(n)

    def check_squareform_multi_matrix(self, n):
        X = np.random.rand(n, 4)
        Y = pdist(X)
        self.failUnless(len(Y.shape) == 1)
        A = squareform(Y)
        Yr = squareform(A)
        s = A.shape
        k = 0
        if verbose >= 3:
            print A.shape, Y.shape, Yr.shape
        self.failUnless(len(s) == 2)
        self.failUnless(len(Yr.shape) == 1)
        self.failUnless(s[0] == s[1])
        for i in xrange(0, s[0]):
            for j in xrange(i+1, s[1]):
                if i != j:
                    #print i, j, k, A[i, j], Y[k]
                    self.failUnless(A[i, j] == Y[k])
                    k += 1
                else:
                    self.failUnless(A[i, j] == 0)

class TestNumObsY(TestCase):

    def test_num_obs_y_multi_matrix(self):
        "Tests num_obs_y with observation matrices of multiple sizes."
        for n in xrange(2, 10):
            X = np.random.rand(n, 4)
            Y = pdist(X)
            #print A.shape, Y.shape, Yr.shape
            self.failUnless(num_obs_y(Y) == n)

    def test_num_obs_y_1(self):
        "Tests num_obs_y(y) on a condensed distance matrix over 1 observations. Expecting exception."
        self.failUnlessRaises(ValueError, self.check_y, 1)

    def test_num_obs_y_2(self):
        "Tests num_obs_y(y) on a condensed distance matrix over 2 observations."
        self.failUnless(self.check_y(2))

    def test_num_obs_y_3(self):
        "Tests num_obs_y(y) on a condensed distance matrix over 3 observations."
        self.failUnless(self.check_y(3))

    def test_num_obs_y_4(self):
        "Tests num_obs_y(y) on a condensed distance matrix over 4 observations."
        self.failUnless(self.check_y(4))

    def test_num_obs_y_5_10(self):
        "Tests num_obs_y(y) on a condensed distance matrix between 5 and 15 observations."
        for i in xrange(5, 16):
            self.minit(i)

    def test_num_obs_y_2_100(self):
        "Tests num_obs_y(y) on 100 improper condensed distance matrices. Expecting exception."
        a = set([])
        for n in xrange(2, 16):
            a.add(n*(n-1)/2)
        for i in xrange(5, 105):
            if i not in a:
                self.failUnlessRaises(ValueError, self.bad_y, i)

    def minit(self, n):
        self.failUnless(self.check_y(n))

    def bad_y(self, n):
        y = np.random.rand(n)
        return num_obs_y(y)

    def check_y(self, n):
        return num_obs_y(self.make_y(n)) == n

    def make_y(self, n):
        return np.random.rand((n*(n-1)/2))

class TestNumObsDM(TestCase):

    ############## num_obs_dm
    def test_num_obs_dm_multi_matrix(self):
        "Tests num_obs_dm with observation matrices of multiple sizes."
        for n in xrange(1, 10):
            X = np.random.rand(n, 4)
            Y = pdist(X)
            A = squareform(Y)
            if verbose >= 3:
                print A.shape, Y.shape
            self.failUnless(num_obs_dm(A) == n)

    def test_num_obs_dm_0(self):
        "Tests num_obs_dm(D) on a 0x0 distance matrix. Expecting exception."
        self.failUnless(self.check_D(0))

    def test_num_obs_dm_1(self):
        "Tests num_obs_dm(D) on a 1x1 distance matrix."
        self.failUnless(self.check_D(1))

    def test_num_obs_dm_2(self):
        "Tests num_obs_dm(D) on a 2x2 distance matrix."
        self.failUnless(self.check_D(2))

    def test_num_obs_dm_3(self):
        "Tests num_obs_dm(D) on a 3x3 distance matrix."
        self.failUnless(self.check_D(2))

    def test_num_obs_dm_4(self):
        "Tests num_obs_dm(D) on a 4x4 distance matrix."
        self.failUnless(self.check_D(4))

    def check_D(self, n):
        return num_obs_dm(self.make_D(n)) == n

    def make_D(self, n):
        return np.random.rand(n, n)

def is_valid_dm_throw(D):
    return is_valid_dm(D, throw=True)

class TestIsValidDM(TestCase):

    def test_is_valid_dm_int16_array_E(self):
        "Tests is_valid_dm(*) on an int16 array. Exception expected."
        D = np.zeros((5, 5), dtype='i')
        self.failUnlessRaises(TypeError, is_valid_dm_throw, (D))

    def test_is_valid_dm_int16_array_F(self):
        "Tests is_valid_dm(*) on an int16 array. False expected."
        D = np.zeros((5, 5), dtype='i')
        self.failUnless(is_valid_dm(D) == False)

    def test_is_valid_dm_improper_shape_1D_E(self):
        "Tests is_valid_dm(*) on a 1D array. Exception expected."
        D = np.zeros((5,), dtype=np.double)
        self.failUnlessRaises(ValueError, is_valid_dm_throw, (D))

    def test_is_valid_dm_improper_shape_1D_F(self):
        "Tests is_valid_dm(*) on a 1D array. False expected."
        D = np.zeros((5,), dtype=np.double)
        self.failUnless(is_valid_dm(D) == False)

    def test_is_valid_dm_improper_shape_3D_E(self):
        "Tests is_valid_dm(*) on a 3D array. Exception expected."
        D = np.zeros((3,3,3), dtype=np.double)
        self.failUnlessRaises(ValueError, is_valid_dm_throw, (D))

    def test_is_valid_dm_improper_shape_3D_F(self):
        "Tests is_valid_dm(*) on a 3D array. False expected."
        D = np.zeros((3,3,3), dtype=np.double)
        self.failUnless(is_valid_dm(D) == False)

    def test_is_valid_dm_nonzero_diagonal_E(self):
        "Tests is_valid_dm(*) on a distance matrix with a nonzero diagonal. Exception expected."
        y = np.random.rand(10)
        D = squareform(y)
        for i in xrange(0, 5):
            D[i, i] = 2.0
        self.failUnlessRaises(ValueError, is_valid_dm_throw, (D))

    def test_is_valid_dm_nonzero_diagonal_F(self):
        "Tests is_valid_dm(*) on a distance matrix with a nonzero diagonal. False expected."
        y = np.random.rand(10)
        D = squareform(y)
        for i in xrange(0, 5):
            D[i, i] = 2.0
        self.failUnless(is_valid_dm(D) == False)

    def test_is_valid_dm_assymetric_E(self):
        "Tests is_valid_dm(*) on an assymetric distance matrix. Exception expected."
        y = np.random.rand(10)
        D = squareform(y)
        D[1,3] = D[3,1] + 1
        self.failUnlessRaises(ValueError, is_valid_dm_throw, (D))

    def test_is_valid_dm_assymetric_F(self):
        "Tests is_valid_dm(*) on an assymetric distance matrix. False expected."
        y = np.random.rand(10)
        D = squareform(y)
        D[1,3] = D[3,1] + 1
        self.failUnless(is_valid_dm(D) == False)

    def test_is_valid_dm_correct_1_by_1(self):
        "Tests is_valid_dm(*) on a correct 1x1. True expected."
        D = np.zeros((1,1), dtype=np.double)
        self.failUnless(is_valid_dm(D) == True)

    def test_is_valid_dm_correct_2_by_2(self):
        "Tests is_valid_dm(*) on a correct 2x2. True expected."
        y = np.random.rand(1)
        D = squareform(y)
        self.failUnless(is_valid_dm(D) == True)

    def test_is_valid_dm_correct_3_by_3(self):
        "Tests is_valid_dm(*) on a correct 3x3. True expected."
        y = np.random.rand(3)
        D = squareform(y)
        self.failUnless(is_valid_dm(D) == True)

    def test_is_valid_dm_correct_4_by_4(self):
        "Tests is_valid_dm(*) on a correct 4x4. True expected."
        y = np.random.rand(6)
        D = squareform(y)
        self.failUnless(is_valid_dm(D) == True)

    def test_is_valid_dm_correct_5_by_5(self):
        "Tests is_valid_dm(*) on a correct 5x5. True expected."
        y = np.random.rand(10)
        D = squareform(y)
        self.failUnless(is_valid_dm(D) == True)

def is_valid_y_throw(y):
    return is_valid_y(y, throw=True)

class TestIsValidY(TestCase):

    def test_is_valid_y_int16_array_E(self):
        "Tests is_valid_y(*) on an int16 array. Exception expected."
        y = np.zeros((10,), dtype='i')
        self.failUnlessRaises(TypeError, is_valid_y_throw, (y))

    def test_is_valid_y_int16_array_F(self):
        "Tests is_valid_y(*) on an int16 array. False expected."
        y = np.zeros((10,), dtype='i')
        self.failUnless(is_valid_y(y) == False)

    def test_is_valid_y_improper_shape_2D_E(self):
        "Tests is_valid_y(*) on a 2D array. Exception expected."
        y = np.zeros((3,3,), dtype=np.double)
        self.failUnlessRaises(ValueError, is_valid_y_throw, (y))

    def test_is_valid_y_improper_shape_2D_F(self):
        "Tests is_valid_y(*) on a 2D array. False expected."
        y = np.zeros((3,3,), dtype=np.double)
        self.failUnless(is_valid_y(y) == False)

    def test_is_valid_y_improper_shape_3D_E(self):
        "Tests is_valid_y(*) on a 3D array. Exception expected."
        y = np.zeros((3,3,3), dtype=np.double)
        self.failUnlessRaises(ValueError, is_valid_y_throw, (y))

    def test_is_valid_y_improper_shape_3D_F(self):
        "Tests is_valid_y(*) on a 3D array. False expected."
        y = np.zeros((3,3,3), dtype=np.double)
        self.failUnless(is_valid_y(y) == False)

    def test_is_valid_y_correct_2_by_2(self):
        "Tests is_valid_y(*) on a correct 2x2 condensed. True expected."
        y = self.correct_n_by_n(2)
        self.failUnless(is_valid_y(y) == True)

    def test_is_valid_y_correct_3_by_3(self):
        "Tests is_valid_y(*) on a correct 3x3 condensed. True expected."
        y = self.correct_n_by_n(3)
        self.failUnless(is_valid_y(y) == True)

    def test_is_valid_y_correct_4_by_4(self):
        "Tests is_valid_y(*) on a correct 4x4 condensed. True expected."
        y = self.correct_n_by_n(4)
        self.failUnless(is_valid_y(y) == True)

    def test_is_valid_y_correct_5_by_5(self):
        "Tests is_valid_y(*) on a correct 5x5 condensed. True expected."
        y = self.correct_n_by_n(5)
        self.failUnless(is_valid_y(y) == True)

    def test_is_valid_y_2_100(self):
        "Tests is_valid_y(*) on 100 improper condensed distance matrices. Expecting exception."
        a = set([])
        for n in xrange(2, 16):
            a.add(n*(n-1)/2)
        for i in xrange(5, 105):
            if i not in a:
                self.failUnlessRaises(ValueError, self.bad_y, i)

    def bad_y(self, n):
        y = np.random.rand(n)
        return is_valid_y(y, throw=True)

    def correct_n_by_n(self, n):
        y = np.random.rand(n*(n-1)/2)
        return y

if __name__=="__main__":
    run_module_suite()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.