iterative.py :  » Math » SciPy » scipy » scipy » sparse » linalg » isolve » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » SciPy 
SciPy » scipy » scipy » sparse » linalg » isolve » iterative.py
"""Iterative methods for solving linear systems"""

__all__ = ['bicg','bicgstab','cg','cgs','gmres','qmr']

import _iterative
import numpy as np

from scipy.sparse.linalg.interface import LinearOperator
from utils import make_system

_type_conv = {'f':'s', 'd':'d', 'F':'c', 'D':'z'}


# Part of the docstring common to all iterative solvers
common_doc = \
"""
Parameters
----------
A : {sparse matrix, dense matrix, LinearOperator}
    The N-by-N matrix of the linear system.
b : {array, matrix}
    Right hand side of the linear system. Has shape (N,) or (N,1).

Optional Parameters
-------------------
x0  : {array, matrix}
    Starting guess for the solution.
tol : float
    Relative tolerance to achieve before terminating.
maxiter : integer
    Maximum number of iterations.  Iteration will stop after maxiter
    steps even if the specified tolerance has not been achieved.
M : {sparse matrix, dense matrix, LinearOperator}
    Preconditioner for A.  The preconditioner should approximate the
    inverse of A.  Effective preconditioning dramatically improves the
    rate of convergence, which implies that fewer iterations are needed
    to reach a given error tolerance.
callback : function
    User-supplied function to call after each iteration.  It is called
    as callback(xk), where xk is the current solution vector.

Outputs
-------
x : {array, matrix}
    The converged solution.
info : integer
    Provides convergence information:
        0  : successful exit
        >0 : convergence to tolerance not achieved, number of iterations
        <0 : illegal input or breakdown

Deprecated Parameters
----------------------
xtype : {'f','d','F','D'}
    The type of the result.  If None, then it will be determined from
    A.dtype.char and b.  If A does not have a typecode method then it
    will compute A.matvec(x0) to get a typecode.   To save the extra
    computation when A does not have a typecode attribute use xtype=0
    for the same type as b or use xtype='f','d','F',or 'D'.
    This parameter has been superceeded by LinearOperator.
"""


def set_docstring(header, footer):
    def combine(fn):
        fn.__doc__ = header + '\n' + common_doc + '\n' + footer
        return fn
    return combine



@set_docstring('Use BIConjugate Gradient iteration to solve A x = b','')
def bicg(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M=None, callback=None):
    A,M,x,b,postprocess = make_system(A,M,x0,b,xtype)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    matvec, rmatvec = A.matvec, A.rmatvec
    psolve, rpsolve = M.matvec, M.rmatvec
    ltr = _type_conv[x.dtype.char]
    revcom   = getattr(_iterative, ltr + 'bicgrevcom')
    stoptest = getattr(_iterative, ltr + 'stoptest2')

    resid = tol
    ndx1 = 1
    ndx2 = -1
    work = np.zeros(6*n,dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    bnrm2 = -1.0
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(work[slice1])
        elif (ijob == 2):
            work[slice2] *= sclr2
            work[slice2] += sclr1*rmatvec(work[slice1])
        elif (ijob == 3):
            work[slice1] = psolve(work[slice2])
        elif (ijob == 4):
            work[slice1] = rpsolve(work[slice2])
        elif (ijob == 5):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(x)
        elif (ijob == 6):
            if ftflag:
                info = -1
                ftflag = False
            bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)
        ijob = 2

    if info > 0 and iter_ == maxiter and resid > tol:
        #info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info

@set_docstring('Use BIConjugate Gradient STABilized iteration to solve A x = b','')
def bicgstab(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M=None, callback=None):
    A,M,x,b,postprocess = make_system(A,M,x0,b,xtype)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    matvec = A.matvec
    psolve = M.matvec
    ltr = _type_conv[x.dtype.char]
    revcom   = getattr(_iterative, ltr + 'bicgstabrevcom')
    stoptest = getattr(_iterative, ltr + 'stoptest2')

    resid = tol
    ndx1 = 1
    ndx2 = -1
    work = np.zeros(7*n,dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    bnrm2 = -1.0
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(work[slice1])
        elif (ijob == 2):
            if psolve is None:
                psolve = get_psolve(A)
            work[slice1] = psolve(work[slice2])
        elif (ijob == 3):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(x)
        elif (ijob == 4):
            if ftflag:
                info = -1
                ftflag = False
            bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)
        ijob = 2

    if info > 0 and iter_ == maxiter and resid > tol:
        #info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info

@set_docstring('Use Conjugate Gradient iteration to solve A x = b','')
def cg(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M=None, callback=None):
    A,M,x,b,postprocess = make_system(A,M,x0,b,xtype)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    matvec = A.matvec
    psolve = M.matvec
    ltr = _type_conv[x.dtype.char]
    revcom   = getattr(_iterative, ltr + 'cgrevcom')
    stoptest = getattr(_iterative, ltr + 'stoptest2')

    resid = tol
    ndx1 = 1
    ndx2 = -1
    work = np.zeros(4*n,dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    bnrm2 = -1.0
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(work[slice1])
        elif (ijob == 2):
            work[slice1] = psolve(work[slice2])
        elif (ijob == 3):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(x)
        elif (ijob == 4):
            if ftflag:
                info = -1
                ftflag = False
            bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)
        ijob = 2


    if info > 0 and iter_ == maxiter and resid > tol:
        #info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info


@set_docstring('Use Conjugate Gradient Squared iteration to solve A x = b','')
def cgs(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M=None, callback=None):
    A,M,x,b,postprocess = make_system(A,M,x0,b,xtype)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    matvec = A.matvec
    psolve = M.matvec
    ltr = _type_conv[x.dtype.char]
    revcom   = getattr(_iterative, ltr + 'cgsrevcom')
    stoptest = getattr(_iterative, ltr + 'stoptest2')

    resid = tol
    ndx1 = 1
    ndx2 = -1
    work = np.zeros(7*n,dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    bnrm2 = -1.0
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(work[slice1])
        elif (ijob == 2):
            work[slice1] = psolve(work[slice2])
        elif (ijob == 3):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(x)
        elif (ijob == 4):
            if ftflag:
                info = -1
                ftflag = False
            bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)
        ijob = 2

    if info > 0 and iter_ == maxiter and resid > tol:
        #info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info


def gmres(A, b, x0=None, tol=1e-5, restart=None, maxiter=None, xtype=None, M=None, callback=None, restrt=None):
    """Use Generalized Minimal RESidual iteration to solve A x = b

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The N-by-N matrix of the linear system.
    b : {array, matrix}
        Right hand side of the linear system. Has shape (N,) or (N,1).

    Optional Parameters
    -------------------
    x0  : {array, matrix}
        Starting guess for the solution.
    tol : float
        Relative tolerance to achieve before terminating.
    restart : integer, optional
        Number of iterations between restarts. Larger values increase
        iteration cost, but may be necessary for convergence.
        (Default: 20)
    maxiter : integer, optional
        Maximum number of iterations.  Iteration will stop after maxiter
        steps even if the specified tolerance has not been achieved.
    M : {sparse matrix, dense matrix, LinearOperator}
        Preconditioner for A.  The preconditioner should approximate the
        inverse of A.  Effective preconditioning dramatically improves the
        rate of convergence, which implies that fewer iterations are needed
        to reach a given error tolerance.
    callback : function
        User-supplied function to call after each iteration.  It is called
        as callback(rk), where rk is the current residual vector.

    Outputs
    -------
    x : {array, matrix}
        The converged solution.
    info : integer
        Provides convergence information:
            0  : successful exit
            >0 : convergence to tolerance not achieved, number of iterations
            <0 : illegal input or breakdown

    See Also
    --------
    LinearOperator

    Deprecated Parameters
    ---------------------
    xtype : {'f','d','F','D'}
        The type of the result.  If None, then it will be determined from
        A.dtype.char and b.  If A does not have a typecode method then it
        will compute A.matvec(x0) to get a typecode.   To save the extra
        computation when A does not have a typecode attribute use xtype=0
        for the same type as b or use xtype='f','d','F',or 'D'.
        This parameter has been superceeded by LinearOperator.

    """

    # Change 'restrt' keyword to 'restart'
    if restrt is None:
        restrt = restart
    elif restart is not None:
        raise ValueError("Cannot specify both restart and restrt keywords. "
                         "Preferably use 'restart' only.")

    A,M,x,b,postprocess = make_system(A,M,x0,b,xtype)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    if restrt is None:
        restrt = 20
    restrt = min(restrt, n)

    matvec = A.matvec
    psolve = M.matvec
    ltr = _type_conv[x.dtype.char]
    revcom   = getattr(_iterative, ltr + 'gmresrevcom')
    stoptest = getattr(_iterative, ltr + 'stoptest2')

    resid = tol
    ndx1 = 1
    ndx2 = -1
    work  = np.zeros((6+restrt)*n,dtype=x.dtype)
    work2 = np.zeros((restrt+1)*(2*restrt+2),dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    bnrm2 = -1.0
    iter_ = maxiter
    old_ijob = ijob
    first_pass = True
    resid_ready = False
    iter_num = 1
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, restrt, work, work2, iter_, resid, info, ndx1, ndx2, ijob)
        #if callback is not None and iter_ > olditer:
        #    callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1): # gmres success, update last residual
            if resid_ready and callback is not None:
                callback(resid)
                resid_ready = False

            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(x)
        elif (ijob == 2):
            work[slice1] = psolve(work[slice2])
            if not first_pass and old_ijob==3:
                resid_ready = True

            first_pass = False
        elif (ijob == 3):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(work[slice1])
            if resid_ready and callback is not None:
                callback(resid)
                resid_ready = False
                iter_num = iter_num+1

        elif (ijob == 4):
            if ftflag:
                info = -1
                ftflag = False
            bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)

        old_ijob = ijob
        ijob = 2

        if iter_num > maxiter:
            break

    if info >= 0 and resid > tol:
        #info isn't set appropriately otherwise
        info = maxiter

    return postprocess(x), info


def qmr(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M1=None, M2=None, callback=None):
    """Use Quasi-Minimal Residual iteration to solve A x = b

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The N-by-N matrix of the linear system.
    b : {array, matrix}
        Right hand side of the linear system. Has shape (N,) or (N,1).

    Optional Parameters
    -------------------
    x0  : {array, matrix}
        Starting guess for the solution.
    tol : float
        Relative tolerance to achieve before terminating.
    maxiter : integer
        Maximum number of iterations.  Iteration will stop after maxiter
        steps even if the specified tolerance has not been achieved.
    M1 : {sparse matrix, dense matrix, LinearOperator}
        Left preconditioner for A.
    M2 : {sparse matrix, dense matrix, LinearOperator}
        Right preconditioner for A. Used together with the left
        preconditioner M1.  The matrix M1*A*M2 should have better
        conditioned than A alone.
    callback : function
        User-supplied function to call after each iteration.  It is called
        as callback(xk), where xk is the current solution vector.

    Outputs
    -------
    x : {array, matrix}
        The converged solution.
    info : integer
        Provides convergence information:
            0  : successful exit
            >0 : convergence to tolerance not achieved, number of iterations
            <0 : illegal input or breakdown

    See Also
    --------
    LinearOperator

    Deprecated Parameters
    ---------------------
    xtype : {'f','d','F','D'}
        The type of the result.  If None, then it will be determined from
        A.dtype.char and b.  If A does not have a typecode method then it
        will compute A.matvec(x0) to get a typecode.   To save the extra
        computation when A does not have a typecode attribute use xtype=0
        for the same type as b or use xtype='f','d','F',or 'D'.
        This parameter has been superceeded by LinearOperator.

    """
    A_ = A
    A,M,x,b,postprocess = make_system(A,None,x0,b,xtype)

    if M1 is None and M2 is None:
        if hasattr(A_,'psolve'):
            def left_psolve(b):
                return A_.psolve(b,'left')
            def right_psolve(b):
                return A_.psolve(b,'right')
            def left_rpsolve(b):
                return A_.rpsolve(b,'left')
            def right_rpsolve(b):
                return A_.rpsolve(b,'right')
            M1 = LinearOperator(A.shape, matvec=left_psolve, rmatvec=left_rpsolve)
            M2 = LinearOperator(A.shape, matvec=right_psolve, rmatvec=right_rpsolve)
        else:
            def id(b):
                return b
            M1 = LinearOperator(A.shape, matvec=id, rmatvec=id)
            M2 = LinearOperator(A.shape, matvec=id, rmatvec=id)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    ltr = _type_conv[x.dtype.char]
    revcom   = getattr(_iterative, ltr + 'qmrrevcom')
    stoptest = getattr(_iterative, ltr + 'stoptest2')

    resid = tol
    ndx1 = 1
    ndx2 = -1
    work = np.zeros(11*n,x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    bnrm2 = -1.0
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*A.matvec(work[slice1])
        elif (ijob == 2):
            work[slice2] *= sclr2
            work[slice2] += sclr1*A.rmatvec(work[slice1])
        elif (ijob == 3):
            work[slice1] = M1.matvec(work[slice2])
        elif (ijob == 4):
            work[slice1] = M2.matvec(work[slice2])
        elif (ijob == 5):
            work[slice1] = M1.rmatvec(work[slice2])
        elif (ijob == 6):
            work[slice1] = M2.rmatvec(work[slice2])
        elif (ijob == 7):
            work[slice2] *= sclr2
            work[slice2] += sclr1*A.matvec(x)
        elif (ijob == 8):
            if ftflag:
                info = -1
                ftflag = False
            bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)
        ijob = 2

    if info > 0 and iter_ == maxiter and resid > tol:
        #info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.