interface.py :  » Math » SciPy » scipy » scipy » sparse » linalg » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » SciPy 
SciPy » scipy » scipy » sparse » linalg » interface.py
import numpy as np
from scipy.sparse.sputils import isshape
from scipy.sparse import isspmatrix

__all__ = ['LinearOperator', 'aslinearoperator']

class LinearOperator:
    """Common interface for performing matrix vector products

    Many iterative methods (e.g. cg, gmres) do not need to know the
    individual entries of a matrix to solve a linear system A*x=b.
    Such solvers only require the computation of matrix vector
    products, A*v where v is a dense vector.  This class serves as
    an abstract interface between iterative solvers and matrix-like
    objects.

    Parameters
    ----------
    shape : tuple
        Matrix dimensions (M,N)
    matvec : callable f(v)
        Returns returns A * v.

    Optional Parameters
    -------------------
    rmatvec : callable f(v)
        Returns A^H * v, where A^H is the conjugate transpose of A.
    matmat : callable f(V)
        Returns A * V, where V is a dense matrix with dimensions (N,K).
    dtype : dtype
        Data type of the matrix.

    See Also
    --------
    aslinearoperator : Construct LinearOperators

    Notes
    -----
    The user-defined matvec() function must properly handle the case
    where v has shape (N,) as well as the (N,1) case.  The shape of
    the return type is handled internally by LinearOperator.

    Examples
    --------
    >>> from scipy.sparse.linalg import LinearOperator
    >>> from scipy import *
    >>> def mv(v):
    ...     return array([ 2*v[0], 3*v[1]])
    ...
    >>> A = LinearOperator( (2,2), matvec=mv )
    >>> A
    <2x2 LinearOperator with unspecified dtype>
    >>> A.matvec( ones(2) )
    array([ 2.,  3.])
    >>> A * ones(2)
    array([ 2.,  3.])

    """
    def __init__(self, shape, matvec, rmatvec=None, matmat=None, dtype=None):

        shape = tuple(shape)

        if not isshape(shape):
            raise ValueError('invalid shape')

        self.shape  = shape
        self._matvec = matvec

        if rmatvec is None:
            def rmatvec(v):
                raise NotImplementedError('rmatvec is not defined')
            self.rmatvec = rmatvec
        else:
            self.rmatvec = rmatvec

        if matmat is not None:
            # matvec each column of V
            self._matmat = matmat

        if dtype is not None:
            self.dtype = np.dtype(dtype)


    def _matmat(self, X):
        """Default matrix-matrix multiplication handler.  Falls back on
        the user-defined matvec() routine, which is always provided.
        """

        return np.hstack( [ self.matvec(col.reshape(-1,1)) for col in X.T ] )


    def matvec(self, x):
        """Matrix-vector multiplication

        Performs the operation y=A*x where A is an MxN linear
        operator and x is a column vector or rank-1 array.

        Parameters
        ----------
        x : {matrix, ndarray}
            An array with shape (N,) or (N,1).

        Returns
        -------
        y : {matrix, ndarray}
            A matrix or ndarray with shape (M,) or (M,1) depending
            on the type and shape of the x argument.

        Notes
        -----
        This matvec wraps the user-specified matvec routine to ensure that
        y has the correct shape and type.

        """

        x = np.asanyarray(x)

        M,N = self.shape

        if x.shape != (N,) and x.shape != (N,1):
            raise ValueError('dimension mismatch')

        y = self._matvec(x)

        if isinstance(x, np.matrix):
            y = np.asmatrix(y)
        else:
            y = np.asarray(y)

        if x.ndim == 1:
            y = y.reshape(M)
        elif x.ndim == 2:
            y = y.reshape(M,1)
        else:
            raise ValueError('invalid shape returned by user-defined matvec()')


        return y


    def matmat(self, X):
        """Matrix-matrix multiplication

        Performs the operation y=A*X where A is an MxN linear
        operator and X dense N*K matrix or ndarray.

        Parameters
        ----------
        X : {matrix, ndarray}
            An array with shape (N,K).

        Returns
        -------
        Y : {matrix, ndarray}
            A matrix or ndarray with shape (M,K) depending on
            the type of the X argument.

        Notes
        -----
        This matmat wraps any user-specified matmat routine to ensure that
        y has the correct type.

        """

        X = np.asanyarray(X)

        if X.ndim != 2:
            raise ValueError('expected rank-2 ndarray or matrix')

        M,N = self.shape

        if X.shape[0] != N:
            raise ValueError('dimension mismatch')

        Y = self._matmat(X)

        if isinstance(Y, np.matrix):
            Y = np.asmatrix(Y)

        return Y


    def __mul__(self,x):
        x = np.asarray(x)

        if x.ndim == 1 or x.ndim == 2 and x.shape[1] == 1:
            return self.matvec(x)
        elif x.ndim == 2:
            return self.matmat(x)
        else:
            raise ValueError('expected rank-1 or rank-2 array or matrix')


    def __repr__(self):
        M,N = self.shape
        if hasattr(self,'dtype'):
            dt = 'dtype=' + str(self.dtype)
        else:
            dt = 'unspecified dtype'

        return '<%dx%d LinearOperator with %s>' % (M,N,dt)

def aslinearoperator(A):
    """Return A as a LinearOperator.

    'A' may be any of the following types:
     - ndarray
     - matrix
     - sparse matrix (e.g. csr_matrix, lil_matrix, etc.)
     - LinearOperator
     - An object with .shape and .matvec attributes

    See the LinearOperator documentation for additonal information.

    Examples
    --------
    >>> from scipy import matrix
    >>> M = matrix( [[1,2,3],[4,5,6]], dtype='int32' )
    >>> aslinearoperator( M )
    <2x3 LinearOperator with dtype=int32>

    """
    if isinstance(A, LinearOperator):
        return A

    elif isinstance(A, np.ndarray) or isinstance(A, np.matrix):
        if A.ndim > 2:
            raise ValueError('array must have rank <= 2')

        A = np.atleast_2d(np.asarray(A))

        def matvec(v):
            return np.dot(A, v)
        def rmatvec(v):
            return np.dot(A.conj().transpose(), v)
        def matmat(V):
            return np.dot(A, V)
        return LinearOperator(A.shape, matvec, rmatvec=rmatvec,
                              matmat=matmat, dtype=A.dtype)

    elif isspmatrix(A):
        def matvec(v):
            return A * v
        def rmatvec(v):
            return A.conj().transpose() * v
        def matmat(V):
            return A * V
        return LinearOperator(A.shape, matvec, rmatvec=rmatvec,
                              matmat=matmat, dtype=A.dtype)

    else:
        if hasattr(A, 'shape') and hasattr(A, 'matvec'):
            rmatvec = None
            dtype = None

            if hasattr(A, 'rmatvec'):
                rmatvec = A.rmatvec
            if hasattr(A, 'dtype'):
                dtype = A.dtype
            return LinearOperator(A.shape, A.matvec,
                                  rmatvec=rmatvec, dtype=dtype)

        else:
            raise TypeError('type not understood')
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.