lobpcg.py :  » Math » SciPy » scipy » scipy » sparse » linalg » eigen » lobpcg » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » SciPy 
SciPy » scipy » scipy » sparse » linalg » eigen » lobpcg » lobpcg.py
"""
Pure SciPy implementation of Locally Optimal Block Preconditioned Conjugate
Gradient Method (LOBPCG), see
http://www-math.cudenver.edu/~aknyazev/software/BLOPEX/

License: BSD

Authors: Robert Cimrman, Andrew Knyazev

Examples in tests directory contributed by Nils Wagner.
"""

import numpy as np
import scipy as sp

from scipy.sparse.linalg import aslinearoperator,LinearOperator

__all__ = ['lobpcg']

## try:
##     from symeig import symeig
## except:
##     raise ImportError('lobpcg requires symeig')

def symeig( mtxA, mtxB = None, eigenvectors = True, select = None ):
    import scipy.linalg as sla
    import scipy.lib.lapack as ll
    if select is None:
        if np.iscomplexobj( mtxA ):
            if mtxB is None:
                fun = ll.get_lapack_funcs( ['heev'], arrays = (mtxA,) )[0]
            else:
                fun = ll.get_lapack_funcs( ['hegv'], arrays = (mtxA,) )[0]
        else:
            if mtxB is None:
                fun = ll.get_lapack_funcs( ['syev'], arrays = (mtxA,) )[0]
            else:
                fun = ll.get_lapack_funcs( ['sygv'], arrays = (mtxA,) )[0]
##         print fun
        if mtxB is None:
            out = fun( mtxA )
        else:
            out = fun( mtxA, mtxB )
##         print w
##         print v
##         print info
##         from symeig import symeig
##         print symeig( mtxA, mtxB )
    else:
        out = sla.eig( mtxA, mtxB, right = eigenvectors )
        w = out[0]
        ii = np.argsort( w )
        w = w[slice( *select )]
        if eigenvectors:
            v = out[1][:,ii]
            v = v[:,slice( *select )]
            out = w, v, 0
        else:
            out = w, 0

    return out[:-1]

def pause():
    raw_input()

def save( ar, fileName ):
    from numpy import savetxt
    savetxt( fileName, ar, precision = 8 )

##
# 21.05.2007, c
def as2d( ar ):
    """
    If the input array is 2D return it, if it is 1D, append a dimension,
    making it a column vector.
    """
    if ar.ndim == 2:
        return ar
    else: # Assume 1!
        aux = np.array( ar, copy = False )
        aux.shape = (ar.shape[0], 1)
        return aux

def makeOperator( operatorInput, expectedShape ):
    """Internal. Takes a dense numpy array or a sparse matrix or
    a function and makes an operator performing matrix * blockvector
    products.

    Example
    -------

    >>> A = makeOperator( arrayA, (n, n) )
    >>> vectorB = A( vectorX )

    """
    if operatorInput is None:
        def ident(x):
            return x
        operator = LinearOperator(expectedShape, ident, matmat=ident)
    else:
        operator = aslinearoperator(operatorInput)

    if operator.shape != expectedShape:
        raise ValueError('operator has invalid shape')

    operator.__call__ = operator.matmat

    return operator



def applyConstraints( blockVectorV, factYBY, blockVectorBY, blockVectorY ):
    """Internal. Changes blockVectorV in place."""
    gramYBV = sp.dot( blockVectorBY.T, blockVectorV )
    import scipy.linalg as sla
    tmp = sla.cho_solve( factYBY, gramYBV )
    blockVectorV -= sp.dot( blockVectorY, tmp )


def b_orthonormalize( B, blockVectorV,
                      blockVectorBV = None, retInvR = False ):
    """Internal."""
    import scipy.linalg as sla
    if blockVectorBV is None:
        if B is not None:
            blockVectorBV = B( blockVectorV )
        else:
            blockVectorBV = blockVectorV # Shared data!!!
    gramVBV = sp.dot( blockVectorV.T, blockVectorBV )
    gramVBV = sla.cholesky( gramVBV )
    sla.inv( gramVBV, overwrite_a = True )
    # gramVBV is now R^{-1}.
    blockVectorV = sp.dot( blockVectorV, gramVBV )
    if B is not None:
        blockVectorBV = sp.dot( blockVectorBV, gramVBV )

    if retInvR:
        return blockVectorV, blockVectorBV, gramVBV
    else:
        return blockVectorV, blockVectorBV

def lobpcg( A, X,
            B=None, M=None, Y=None,
            tol= None, maxiter=20,
            largest = True, verbosityLevel = 0,
            retLambdaHistory = False, retResidualNormsHistory = False ):
    """Solve symmetric partial eigenproblems with optional preconditioning

    This function implements the Locally Optimal Block Preconditioned
    Conjugate Gradient Method (LOBPCG).


    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The symmetric linear operator of the problem, usually a
        sparse matrix.  Often called the "stiffness matrix".
    X : array_like
        Initial approximation to the k eigenvectors. If A has
        shape=(n,n) then X should have shape shape=(n,k).

    Returns
    -------
    w : array
        Array of k eigenvalues
    v : array
        An array of k eigenvectors.  V has the same shape as X.


    Optional Parameters
    -------------------
    B : {dense matrix, sparse matrix, LinearOperator}
        the right hand side operator in a generalized eigenproblem.
        by default, B = Identity
        often called the "mass matrix"
    M : {dense matrix, sparse matrix, LinearOperator}
        preconditioner to A; by default M = Identity
        M should approximate the inverse of A
    Y : array_like
        n-by-sizeY matrix of constraints, sizeY < n
        The iterations will be performed in the B-orthogonal complement
        of the column-space of Y. Y must be full rank.

    Other Parameters
    ----------------
    tol : scalar
        Solver tolerance (stopping criterion)
        by default: tol=n*sqrt(eps)
    maxiter: integer
        maximum number of iterations
        by default: maxiter=min(n,20)
    largest : boolean
        when True, solve for the largest eigenvalues, otherwise the smallest
    verbosityLevel : integer
        controls solver output.  default: verbosityLevel = 0.
    retLambdaHistory : boolean
        whether to return eigenvalue history
    retResidualNormsHistory : boolean
        whether to return history of residual norms


    Notes
    -----
    If both retLambdaHistory and retResidualNormsHistory are True, the
    return tuple has the following format
    (lambda, V, lambda history, residual norms history)

    """
    failureFlag = True
    import scipy.linalg as sla

    blockVectorX = X
    blockVectorY = Y
    residualTolerance = tol
    maxIterations = maxiter

    if blockVectorY is not None:
        sizeY = blockVectorY.shape[1]
    else:
        sizeY = 0

    # Block size.
    if len(blockVectorX.shape) != 2:
        raise ValueError('expected rank-2 array for argument X')

    n, sizeX = blockVectorX.shape
    if sizeX > n:
        raise ValueError('X column dimension exceeds the row dimension')

    A = makeOperator(A, (n,n))
    B = makeOperator(B, (n,n))
    M = makeOperator(M, (n,n))

    if (n - sizeY) < (5 * sizeX):
        #warn('The problem size is small compared to the block size.' \
        #        ' Using dense eigensolver instead of LOBPCG.')

        if blockVectorY is not None:
            raise NotImplementedError('symeig does not support constraints')

        if largest:
            lohi = (n - sizeX, n)
        else:
            lohi = (1, sizeX)

        A_dense = A(np.eye(n))

        if B is not None:
            B_dense = B(np.eye(n))
            _lambda, eigBlockVector = symeig(A_dense, B_dense, select=lohi )
        else:
            _lambda, eigBlockVector = symeig(A_dense, select=lohi )

        return _lambda, eigBlockVector


    if residualTolerance is None:
        residualTolerance = np.sqrt( 1e-15 ) * n

    maxIterations = min( n, maxIterations )

    if verbosityLevel:
        aux = "Solving "
        if B is None:
            aux += "standard"
        else:
            aux += "generalized"
        aux += " eigenvalue problem with"
        if M is None:
            aux += "out"
        aux += " preconditioning\n\n"
        aux += "matrix size %d\n" % n
        aux += "block size %d\n\n" % sizeX
        if blockVectorY is None:
            aux += "No constraints\n\n"
        else:
            if sizeY > 1:
                aux += "%d constraints\n\n" % sizeY
            else:
                aux += "%d constraint\n\n" % sizeY
        print aux

    ##
    # Apply constraints to X.
    if blockVectorY is not None:

        if B is not None:
            blockVectorBY = B( blockVectorY )
        else:
            blockVectorBY = blockVectorY

        # gramYBY is a dense array.
        gramYBY = sp.dot( blockVectorY.T, blockVectorBY )
        try:
            # gramYBY is a Cholesky factor from now on...
            gramYBY = sla.cho_factor( gramYBY )
        except:
            raise ValueError('cannot handle linearly dependent constraints')

        applyConstraints( blockVectorX, gramYBY, blockVectorBY, blockVectorY )

    ##
    # B-orthonormalize X.
    blockVectorX, blockVectorBX = b_orthonormalize( B, blockVectorX )

    ##
    # Compute the initial Ritz vectors: solve the eigenproblem.
    blockVectorAX = A( blockVectorX )
    gramXAX = sp.dot( blockVectorX.T, blockVectorAX )
    # gramXBX is X^T * X.
    gramXBX = sp.dot( blockVectorX.T, blockVectorX )

    _lambda, eigBlockVector = symeig( gramXAX )
    ii = np.argsort( _lambda )[:sizeX]
    if largest:
        ii = ii[::-1]
    _lambda = _lambda[ii]

    eigBlockVector = np.asarray( eigBlockVector[:,ii] )
    blockVectorX  = sp.dot( blockVectorX,  eigBlockVector )
    blockVectorAX = sp.dot( blockVectorAX, eigBlockVector )
    if B is not None:
        blockVectorBX = sp.dot( blockVectorBX, eigBlockVector )

    ##
    # Active index set.
    activeMask = np.ones( (sizeX,), dtype = np.bool )

    lambdaHistory = [_lambda]
    residualNormsHistory = []

    previousBlockSize = sizeX
    ident  = np.eye( sizeX, dtype = A.dtype )
    ident0 = np.eye( sizeX, dtype = A.dtype )

    ##
    # Main iteration loop.
    for iterationNumber in xrange( maxIterations ):
        if verbosityLevel > 0:
            print 'iteration %d' %  iterationNumber

        aux = blockVectorBX * _lambda[np.newaxis,:]
        blockVectorR = blockVectorAX - aux

        aux = np.sum( blockVectorR.conjugate() * blockVectorR, 0 )
        residualNorms = np.sqrt( aux )

        residualNormsHistory.append( residualNorms )

        ii = np.where( residualNorms > residualTolerance, True, False )
        activeMask = activeMask & ii
        if verbosityLevel > 2:
            print activeMask

        currentBlockSize = activeMask.sum()
        if currentBlockSize != previousBlockSize:
            previousBlockSize = currentBlockSize
            ident = np.eye( currentBlockSize, dtype = A.dtype )

        if currentBlockSize == 0:
            failureFlag = False # All eigenpairs converged.
            break

        if verbosityLevel > 0:
            print 'current block size:', currentBlockSize
            print 'eigenvalue:', _lambda
            print 'residual norms:', residualNorms
        if verbosityLevel > 10:
            print eigBlockVector

        activeBlockVectorR = as2d( blockVectorR[:,activeMask] )

        if iterationNumber > 0:
            activeBlockVectorP  = as2d( blockVectorP [:,activeMask] )
            activeBlockVectorAP = as2d( blockVectorAP[:,activeMask] )
            activeBlockVectorBP = as2d( blockVectorBP[:,activeMask] )

        if M is not None:
            # Apply preconditioner T to the active residuals.
            activeBlockVectorR = M( activeBlockVectorR )

        ##
        # Apply constraints to the preconditioned residuals.
        if blockVectorY is not None:
            applyConstraints( activeBlockVectorR,
                              gramYBY, blockVectorBY, blockVectorY )

        ##
        # B-orthonormalize the preconditioned residuals.

        aux = b_orthonormalize( B, activeBlockVectorR )
        activeBlockVectorR, activeBlockVectorBR = aux

        activeBlockVectorAR = A( activeBlockVectorR )

        if iterationNumber > 0:
            aux = b_orthonormalize( B, activeBlockVectorP,
                                    activeBlockVectorBP, retInvR = True )
            activeBlockVectorP, activeBlockVectorBP, invR = aux
            activeBlockVectorAP = sp.dot( activeBlockVectorAP, invR )

        ##
        # Perform the Rayleigh Ritz Procedure:
        # Compute symmetric Gram matrices:

        xaw = sp.dot( blockVectorX.T,       activeBlockVectorAR )
        waw = sp.dot( activeBlockVectorR.T, activeBlockVectorAR )
        xbw = sp.dot( blockVectorX.T,       activeBlockVectorBR )

        if iterationNumber > 0:
            xap = sp.dot( blockVectorX.T,       activeBlockVectorAP )
            wap = sp.dot( activeBlockVectorR.T, activeBlockVectorAP )
            pap = sp.dot( activeBlockVectorP.T, activeBlockVectorAP )
            xbp = sp.dot( blockVectorX.T,       activeBlockVectorBP )
            wbp = sp.dot( activeBlockVectorR.T, activeBlockVectorBP )

            gramA = np.bmat( [[np.diag( _lambda ),   xaw,  xap],
                              [             xaw.T,   waw,  wap],
                              [             xap.T, wap.T,  pap]] )

            gramB = np.bmat( [[ident0,    xbw,    xbp],
                              [ xbw.T,  ident,    wbp],
                              [ xbp.T,  wbp.T,  ident]] )
        else:
            gramA = np.bmat( [[np.diag( _lambda ),  xaw],
                              [             xaw.T,  waw]] )
            gramB = np.bmat( [[ident0,    xbw],
                              [ xbw.T,  ident]] )

        try:
            assert np.allclose( gramA.T, gramA )
        except:
            print gramA.T - gramA
            raise

        try:
            assert np.allclose( gramB.T, gramB )
        except:
            print gramB.T - gramB
            raise

        if verbosityLevel > 10:
            save( gramA, 'gramA' )
            save( gramB, 'gramB' )

        ##
        # Solve the generalized eigenvalue problem.
#        _lambda, eigBlockVector = la.eig( gramA, gramB )
        _lambda, eigBlockVector = symeig( gramA, gramB )
        ii = np.argsort( _lambda )[:sizeX]
        if largest:
            ii = ii[::-1]
        if verbosityLevel > 10:
            print ii

        _lambda = _lambda[ii].astype( np.float64 )
        eigBlockVector = np.asarray( eigBlockVector[:,ii].astype( np.float64 ) )

        lambdaHistory.append( _lambda )

        if verbosityLevel > 10:
            print 'lambda:', _lambda
##         # Normalize eigenvectors!
##         aux = np.sum( eigBlockVector.conjugate() * eigBlockVector, 0 )
##         eigVecNorms = np.sqrt( aux )
##         eigBlockVector = eigBlockVector / eigVecNorms[np.newaxis,:]
#        eigBlockVector, aux = b_orthonormalize( B, eigBlockVector )

        if verbosityLevel > 10:
            print eigBlockVector
            pause()

        ##
        # Compute Ritz vectors.
        if iterationNumber > 0:
            eigBlockVectorX = eigBlockVector[:sizeX]
            eigBlockVectorR = eigBlockVector[sizeX:sizeX+currentBlockSize]
            eigBlockVectorP = eigBlockVector[sizeX+currentBlockSize:]

            pp  = sp.dot( activeBlockVectorR, eigBlockVectorR )
            pp += sp.dot( activeBlockVectorP, eigBlockVectorP )

            app  = sp.dot( activeBlockVectorAR, eigBlockVectorR )
            app += sp.dot( activeBlockVectorAP, eigBlockVectorP )

            bpp  = sp.dot( activeBlockVectorBR, eigBlockVectorR )
            bpp += sp.dot( activeBlockVectorBP, eigBlockVectorP )
        else:
            eigBlockVectorX = eigBlockVector[:sizeX]
            eigBlockVectorR = eigBlockVector[sizeX:]

            pp  = sp.dot( activeBlockVectorR,  eigBlockVectorR )
            app = sp.dot( activeBlockVectorAR, eigBlockVectorR )
            bpp = sp.dot( activeBlockVectorBR, eigBlockVectorR )

        if verbosityLevel > 10:
            print pp
            print app
            print bpp
            pause()

        blockVectorX  = sp.dot( blockVectorX, eigBlockVectorX )  + pp
        blockVectorAX = sp.dot( blockVectorAX, eigBlockVectorX ) + app
        blockVectorBX = sp.dot( blockVectorBX, eigBlockVectorX ) + bpp

        blockVectorP, blockVectorAP, blockVectorBP = pp, app, bpp

    aux = blockVectorBX * _lambda[np.newaxis,:]
    blockVectorR = blockVectorAX - aux

    aux = np.sum( blockVectorR.conjugate() * blockVectorR, 0 )
    residualNorms = np.sqrt( aux )


    if verbosityLevel > 0:
        print 'final eigenvalue:', _lambda
        print 'final residual norms:', residualNorms

    if retLambdaHistory:
        if retResidualNormsHistory:
            return _lambda, blockVectorX, lambdaHistory, residualNormsHistory
        else:
            return _lambda, blockVectorX, lambdaHistory
    else:
        if retResidualNormsHistory:
            return _lambda, blockVectorX, residualNormsHistory
        else:
            return _lambda, blockVectorX

###########################################################################
if __name__ == '__main__':
    from scipy.sparse import spdiags,speye,issparse
    import time

##     def B( vec ):
##         return vec

    n = 100
    vals = [np.arange( n, dtype = np.float64 ) + 1]
    A = spdiags( vals, 0, n, n )
    B = speye( n, n )
#    B[0,0] = 0
    B = np.eye( n, n )
    Y = np.eye( n, 3 )


#    X = sp.rand( n, 3 )
    xfile = {100 : 'X.txt', 1000 : 'X2.txt', 10000 : 'X3.txt'}
    X = np.fromfile( xfile[n], dtype = np.float64, sep = ' ' )
    X.shape = (n, 3)

    ivals = [1./vals[0]]
    def precond( x ):
        invA = spdiags( ivals, 0, n, n )
        y = invA  * x
        if issparse( y ):
            y = y.toarray()

        return as2d( y )

    precond = spdiags( ivals, 0, n, n )
#    precond = None
    tt = time.clock()
#    B = None
    eigs, vecs = lobpcg( X, A, B, blockVectorY = Y,
                         M = precond,
                         residualTolerance = 1e-4, maxIterations = 40,
                         largest = False, verbosityLevel = 1 )
    print 'solution time:', time.clock() - tt

    print vecs
    print eigs
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.