lil.py :  » Math » SciPy » scipy » scipy » sparse » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » SciPy 
SciPy » scipy » scipy » sparse » lil.py
"""LInked List sparse matrix class
"""

__docformat__ = "restructuredtext en"

__all__ = ['lil_matrix','isspmatrix_lil']

from bisect import bisect_left

import numpy as np

from base import spmatrix,isspmatrix
from sputils import getdtype,isshape,issequence,isscalarlike

class lil_matrix(spmatrix):
    """Row-based linked list sparse matrix

    This is an efficient structure for constructing sparse
    matrices incrementally.

    This can be instantiated in several ways:
        lil_matrix(D)
            with a dense matrix or rank-2 ndarray D

        lil_matrix(S)
            with another sparse matrix S (equivalent to S.tocsc())

        lil_matrix((M, N), [dtype])
            to construct an empty matrix with shape (M, N)
            dtype is optional, defaulting to dtype='d'.

    Notes
    -----

    Advantages of the LIL format
        - supports flexible slicing
        - changes to the matrix sparsity structure are efficient

    Disadvantages of the LIL format
        - arithmetic operations LIL + LIL are slow (consider CSR or CSC)
        - slow column slicing (consider CSC)
        - slow matrix vector products (consider CSR or CSC)

    Intended Usage
        - LIL is a convenient format for constructing sparse matrices
        - once a matrix has been constructed, convert to CSR or
          CSC format for fast arithmetic and matrix vector operations
        - consider using the COO format when constructing large matrices

    Data Structure
        - An array (``self.rows``) of rows, each of which is a sorted
          list of column indices of non-zero elements.
        - The corresponding nonzero values are stored in similar
          fashion in ``self.data``.


    """

    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        spmatrix.__init__(self)
        self.dtype = getdtype(dtype, arg1, default=float)

        # First get the shape
        if isspmatrix(arg1):
            if isspmatrix_lil(arg1) and copy:
                A = arg1.copy()
            else:
                A = arg1.tolil()

            if dtype is not None:
                A = A.astype(dtype)

            self.shape = A.shape
            self.dtype = A.dtype
            self.rows  = A.rows
            self.data  = A.data
        elif isinstance(arg1,tuple):
            if isshape(arg1):
                if shape is not None:
                    raise ValueError('invalid use of shape parameter')
                M, N = arg1
                self.shape = (M,N)
                self.rows = np.empty((M,), dtype=object)
                self.data = np.empty((M,), dtype=object)
                for i in range(M):
                    self.rows[i] = []
                    self.data[i] = []
            else:
                raise TypeError('unrecognized lil_matrix constructor usage')
        else:
            #assume A is dense
            try:
                A = np.asmatrix(arg1)
            except TypeError:
                raise TypeError('unsupported matrix type')
            else:
                from csr import csr_matrix
                A = csr_matrix(A, dtype=dtype).tolil()

                self.shape = A.shape
                self.dtype = A.dtype
                self.rows  = A.rows
                self.data  = A.data

    def __iadd__(self,other):
        self[:,:] = self + other
        return self

    def __isub__(self,other):
        self[:,:] = self - other
        return self

    def __imul__(self,other):
        if isscalarlike(other):
            self[:,:] = self * other
            return self
        else:
            raise NotImplementedError

    def __itruediv__(self,other):
        if isscalarlike(other):
            self[:,:] = self / other
            return self
        else:
            raise NotImplementedError

    # Whenever the dimensions change, empty lists should be created for each
    # row

    def getnnz(self):
        return sum([len(rowvals) for rowvals in self.data])
    nnz = property(fget=getnnz)

    def __str__(self):
        val = ''
        for i, row in enumerate(self.rows):
            for pos, j in enumerate(row):
                val += "  %s\t%s\n" % (str((i, j)), str(self.data[i][pos]))
        return val[:-1]

    def getrowview(self, i):
        """Returns a view of the 'i'th row (without copying).
        """
        new = lil_matrix((1, self.shape[1]), dtype=self.dtype)
        new.rows[0] = self.rows[i]
        new.data[0] = self.data[i]
        return new

    def getrow(self, i):
        """Returns a copy of the 'i'th row.
        """
        new = lil_matrix((1, self.shape[1]), dtype=self.dtype)
        new.rows[0] = self.rows[i][:]
        new.data[0] = self.data[i][:]
        return new

    def _get1(self, i, j):

        if i < 0:
            i += self.shape[0]
        if i < 0 or i >= self.shape[0]:
            raise IndexError('row index out of bounds')

        if j < 0:
            j += self.shape[1]
        if j < 0 or j >= self.shape[1]:
            raise IndexError('column index out of bounds')

        row  = self.rows[i]
        data = self.data[i]

        pos = bisect_left(row, j)
        if pos != len(data) and row[pos] == j:
            return data[pos]
        else:
            return 0

    def _slicetoseq(self, j, shape):
        if j.start is not None and j.start < 0:
            start =  shape + j.start
        elif j.start is None:
            start = 0
        else:
            start = j.start
        if j.stop is not None and j.stop < 0:
            stop = shape + j.stop
        elif j.stop is None:
            stop = shape
        else:
            stop = j.stop
        j = range(start, stop, j.step or 1)
        return j


    def __getitem__(self, index):
        """Return the element(s) index=(i, j), where j may be a slice.
        This always returns a copy for consistency, since slices into
        Python lists return copies.
        """
        try:
            i, j = index
        except (AssertionError, TypeError):
            raise IndexError('invalid index')

        if np.isscalar(i):
            if np.isscalar(j):
                return self._get1(i, j)
            if isinstance(j, slice):
                j = self._slicetoseq(j, self.shape[1])
            if issequence(j):
                return self.__class__([[self._get1(i, jj) for jj in j]])
        elif issequence(i) and issequence(j):
            return self.__class__([[self._get1(ii, jj) for (ii, jj) in zip(i, j)]])
        elif issequence(i) or isinstance(i, slice):
            if isinstance(i, slice):
                i = self._slicetoseq(i, self.shape[0])
            if np.isscalar(j):
                return self.__class__([[self._get1(ii, j)] for ii in i])
            if isinstance(j, slice):
                j = self._slicetoseq(j, self.shape[1])
            if issequence(j):
                return self.__class__([[self._get1(ii, jj) for jj in j] for ii in i])
        else:
            raise IndexError

    def _insertat2(self, row, data, j, x):
        """ helper for __setitem__: insert a value in the given row/data at
        column j. """

        if j < 0: #handle negative column indices
            j += self.shape[1]

        if j < 0 or j >= self.shape[1]:
            raise IndexError('column index out of bounds')
            
        if not np.isscalar(x):
            raise ValueError('setting an array element with a sequence')

        try:
            x = self.dtype.type(x)
        except:
            raise TypeError('Unable to convert value (%s) to dtype [%s]' % (x,self.dtype.name))

        pos = bisect_left(row, j)
        if x != 0:
            if pos == len(row):
                row.append(j)
                data.append(x)
            elif row[pos] != j:
                row.insert(pos, j)
                data.insert(pos, x)
            else:
                data[pos] = x
        else:
            if pos < len(row) and row[pos] == j:
                del row[pos]
                del data[pos]

    def _setitem_setrow(self, row, data, j, xrow, xdata, xcols):
        if isinstance(j, slice):
            j = self._slicetoseq(j, self.shape[1])
        if issequence(j):
            if xcols == len(j):
                for jj, xi in zip(j, xrange(xcols)):
                   pos = bisect_left(xrow, xi)
                   if pos != len(xdata) and xrow[pos] == xi:
                       self._insertat2(row, data, jj, xdata[pos])
                   else:
                       self._insertat2(row, data, jj, 0)
            elif xcols == 1:           # OK, broadcast across row
                if len(xdata) > 0 and xrow[0] == 0:
                    val = xdata[0]
                else:
                    val = 0
                for jj in j:
                    self._insertat2(row, data, jj,val)
            else:
                raise IndexError('invalid index')
        elif np.isscalar(j):
            if not xcols == 1:
                raise ValueError('array dimensions are not compatible for copy')
            if len(xdata) > 0 and xrow[0] == 0:
                self._insertat2(row, data, j, xdata[0])
            else:
                self._insertat2(row, data, j, 0)
        else:
            raise ValueError('invalid column value: %s' % str(j))

    def __setitem__(self, index, x):
        try:
            i, j = index
        except (ValueError, TypeError):
            raise IndexError('invalid index')

        # shortcut for common case of single entry assign:
        if np.isscalar(x) and np.isscalar(i) and np.isscalar(j):
            self._insertat2(self.rows[i], self.data[i], j, x)
            return

        # shortcut for common case of full matrix assign:
        if isspmatrix(x):
          if isinstance(i, slice) and i == slice(None) and \
             isinstance(j, slice) and j == slice(None):
               x = lil_matrix(x)
               self.rows = x.rows
               self.data = x.data
               return

        if isinstance(i, tuple):       # can't index lists with tuple
            i = list(i)

        if np.isscalar(i):
            rows = [self.rows[i]]
            datas = [self.data[i]]
        else:
            rows = self.rows[i]
            datas = self.data[i]

        x = lil_matrix(x, copy=False)
        xrows, xcols = x.shape
        if xrows == len(rows):    # normal rectangular copy
            for row, data, xrow, xdata in zip(rows, datas, x.rows, x.data):
                self._setitem_setrow(row, data, j, xrow, xdata, xcols)
        elif xrows == 1:          # OK, broadcast down column
            for row, data in zip(rows, datas):
                self._setitem_setrow(row, data, j, x.rows[0], x.data[0], xcols)

        # needed to pass 'test_lil_sequence_assignement' unit test:
        # -- set row from column of entries --
        elif xcols == len(rows):
            x = x.T
            for row, data, xrow, xdata in zip(rows, datas, x.rows, x.data):
                self._setitem_setrow(row, data, j, xrow, xdata, xrows)
        else:
            raise IndexError('invalid index')

    def _mul_scalar(self, other):
        if other == 0:
            # Multiply by zero: return the zero matrix
            new = lil_matrix(self.shape, dtype=self.dtype)
        else:
            new = self.copy()
            # Multiply this scalar by every element.
            new.data = np.array([[val*other for val in rowvals] for
                                  rowvals in new.data], dtype=object)
        return new

    def __truediv__(self, other):           # self / other
        if isscalarlike(other):
            new = self.copy()
            # Divide every element by this scalar
            new.data = np.array([[val/other for val in rowvals] for
                                  rowvals in new.data], dtype=object)
            return new
        else:
            return self.tocsr() / other

## This code doesn't work with complex matrices
#    def multiply(self, other):
#        """Point-wise multiplication by another lil_matrix.
#
#        """
#        if np.isscalar(other):
#            return self.__mul__(other)
#
#        if isspmatrix_lil(other):
#            reference,target = self,other
#
#            if reference.shape != target.shape:
#                raise ValueError("Dimensions do not match.")
#
#            if len(reference.data) > len(target.data):
#                reference,target = target,reference
#
#            new = lil_matrix(reference.shape)
#            for r,row in enumerate(reference.rows):
#                tr = target.rows[r]
#                td = target.data[r]
#                rd = reference.data[r]
#                L = len(tr)
#                for c,column in enumerate(row):
#                    ix = bisect_left(tr,column)
#                    if ix < L and tr[ix] == column:
#                        new.rows[r].append(column)
#                        new.data[r].append(rd[c] * td[ix])
#            return new
#        else:
#            raise ValueError("Point-wise multiplication only allowed "
#                             "with another lil_matrix.")

    def copy(self):
        from copy import deepcopy
        new = lil_matrix(self.shape, dtype=self.dtype)
        new.data = deepcopy(self.data)
        new.rows = deepcopy(self.rows)
        return new

    def reshape(self,shape):
        new = lil_matrix(shape, dtype=self.dtype)
        j_max = self.shape[1]
        for i,row in enumerate(self.rows):
            for col,j in enumerate(row):
                new_r,new_c = np.unravel_index(i*j_max + j,shape)
                new[new_r,new_c] = self[i,j]
        return new

    def toarray(self):
        d = np.zeros(self.shape, dtype=self.dtype)
        for i, row in enumerate(self.rows):
            for pos, j in enumerate(row):
                d[i, j] = self.data[i][pos]
        return d

    def transpose(self):
        return self.tocsr().transpose().tolil()

    def tolil(self, copy=False):
        if copy:
            return self.copy()
        else:
            return self

    def tocsr(self):
        """ Return Compressed Sparse Row format arrays for this matrix.
        """

        indptr = np.asarray([len(x) for x in self.rows], dtype=np.intc)
        indptr = np.concatenate( (np.array([0], dtype=np.intc), np.cumsum(indptr)) )

        nnz = indptr[-1]

        indices = []
        for x in self.rows:
            indices.extend(x)
        indices = np.asarray(indices, dtype=np.intc)

        data = []
        for x in self.data:
            data.extend(x)
        data = np.asarray(data, dtype=self.dtype)

        from csr import csr_matrix
        return csr_matrix((data, indices, indptr), shape=self.shape)

    def tocsc(self):
        """ Return Compressed Sparse Column format arrays for this matrix.
        """
        return self.tocsr().tocsc()


from sputils import _isinstance

def isspmatrix_lil( x ):
    return _isinstance(x, lil_matrix)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.