csr.py :  » Math » SciPy » scipy » scipy » sparse » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » SciPy 
SciPy » scipy » scipy » sparse » csr.py
"""Compressed Sparse Row matrix format"""

__docformat__ = "restructuredtext en"

__all__ = ['csr_matrix', 'isspmatrix_csr']


from warnings import warn

import numpy as np

from sparsetools import csr_tocsc,csr_tobsr,csr_count_blocks,\
        get_csr_submatrix, csr_sample_values
from sputils import upcast,isintlike


from compressed import _cs_matrix

class csr_matrix(_cs_matrix):
    """
    Compressed Sparse Row matrix

    This can be instantiated in several ways:
        csr_matrix(D)
            with a dense matrix or rank-2 ndarray D

        csr_matrix(S)
            with another sparse matrix S (equivalent to S.tocsr())

        csr_matrix((M, N), [dtype])
            to construct an empty matrix with shape (M, N)
            dtype is optional, defaulting to dtype='d'.

        csr_matrix((data, ij), [shape=(M, N)])
            where ``data`` and ``ij`` satisfy the relationship
            ``a[ij[0, k], ij[1, k]] = data[k]``

        csr_matrix((data, indices, indptr), [shape=(M, N)])
            is the standard CSR representation where the column indices for
            row i are stored in ``indices[indptr[i]:indices[i+1]]`` and their
            corresponding values are stored in ``data[indptr[i]:indptr[i+1]]``.
            If the shape parameter is not supplied, the matrix dimensions
            are inferred from the index arrays.

    Notes
    -----
    Advantages of the CSR format
      - efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
      - efficient row slicing
      - fast matrix vector products

    Disadvantages of the CSR format
      - slow column slicing operations (consider CSC)
      - changes to the sparsity structure are expensive (consider LIL or DOK)

    Examples
    --------

    >>> from scipy.sparse import *
    >>> from scipy import *
    >>> csr_matrix( (3,4), dtype=int8 ).todense()
    matrix([[0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0]], dtype=int8)

    >>> row = array([0,0,1,2,2,2])
    >>> col = array([0,2,2,0,1,2])
    >>> data = array([1,2,3,4,5,6])
    >>> csr_matrix( (data,(row,col)), shape=(3,3) ).todense()
    matrix([[1, 0, 2],
            [0, 0, 3],
            [4, 5, 6]])

    >>> indptr = array([0,2,3,6])
    >>> indices = array([0,2,2,0,1,2])
    >>> data = array([1,2,3,4,5,6])
    >>> csr_matrix( (data,indices,indptr), shape=(3,3) ).todense()
    matrix([[1, 0, 2],
            [0, 0, 3],
            [4, 5, 6]])

    """

    def __getattr__(self, attr):
        if attr == 'colind':
            warn("colind attribute no longer in use. Use .indices instead",
                    DeprecationWarning)
            return self.indices
        else:
            return _cs_matrix.__getattr__(self, attr)

    def transpose(self, copy=False):
        from csc import csc_matrix
        M,N = self.shape
        return csc_matrix((self.data,self.indices,self.indptr), shape=(N,M), copy=copy)

    @np.deprecate
    def rowcol(self, ind):
        #TODO remove after 0.7
        col = self.indices[ind]
        row = np.searchsorted(self.indptr, ind+1)-1
        return (row, col)


    def tolil(self):
        from lil import lil_matrix
        lil = lil_matrix(self.shape,dtype=self.dtype)

        self.sort_indices() #lil_matrix needs sorted column indices

        ptr,ind,dat = self.indptr,self.indices,self.data
        rows, data  = lil.rows, lil.data

        for n in xrange(self.shape[0]):
            start = ptr[n]
            end   = ptr[n+1]
            rows[n] = ind[start:end].tolist()
            data[n] = dat[start:end].tolist()

        return lil

    def tocsr(self, copy=False):
        if copy:
            return self.copy()
        else:
            return self

    def tocsc(self):
        indptr  = np.empty(self.shape[1] + 1, dtype=np.intc)
        indices = np.empty(self.nnz, dtype=np.intc)
        data    = np.empty(self.nnz, dtype=upcast(self.dtype))

        csr_tocsc(self.shape[0], self.shape[1], \
                  self.indptr, self.indices, self.data, \
                  indptr, indices, data)

        from csc import csc_matrix
        A = csc_matrix((data, indices, indptr), shape=self.shape)
        A.has_sorted_indices = True
        return A

    def tobsr(self, blocksize=None, copy=True):
        from bsr import bsr_matrix

        if blocksize is None:
            from spfuncs import estimate_blocksize
            return self.tobsr(blocksize=estimate_blocksize(self))

        elif blocksize == (1,1):
            arg1 = (self.data.reshape(-1,1,1),self.indices,self.indptr)
            return bsr_matrix(arg1, shape=self.shape, copy=copy )

        else:
            R,C = blocksize
            M,N = self.shape

            if R < 1 or C < 1 or M % R != 0 or N % C != 0:
                raise ValueError('invalid blocksize %s' % blocksize)

            blks = csr_count_blocks(M,N,R,C,self.indptr,self.indices)

            indptr  = np.empty(M/R + 1,    dtype=np.intc)
            indices = np.empty(blks,       dtype=np.intc)
            data    = np.zeros((blks,R,C), dtype=self.dtype)

            csr_tobsr(M, N, R, C, self.indptr, self.indices, self.data, \
                    indptr, indices, data.ravel() )

            return bsr_matrix((data,indices,indptr), shape=self.shape)

    # these functions are used by the parent class (_cs_matrix)
    # to remove redudancy between csc_matrix and csr_matrix
    def _swap(self,x):
        """swap the members of x if this is a column-oriented matrix
        """
        return (x[0],x[1])


    def __getitem__(self, key):
        def asindices(x):
            try:
                x = np.asarray(x, dtype=np.intc)
            except:
                raise IndexError('invalid index')
            else:
                return x
        def check_bounds(indices,N):
            max_indx = indices.max()
            if max_indx >= N:
                raise IndexError('index (%d) out of range' % max_indx)

            min_indx = indices.min()
            if min_indx < -N:
                raise IndexError('index (%d) out of range' % (N + min_indx))

            return (min_indx,max_indx)

        def extractor(indices,N):
            """Return a sparse matrix P so that P*self implements
            slicing of the form self[[1,2,3],:]
            """
            indices = asindices(indices)
    
            (min_indx,max_indx) = check_bounds(indices,N)

            if min_indx < 0:
                indices = indices.copy()
                indices[indices < 0] += N

            indptr  = np.arange(len(indices) + 1, dtype=np.intc)
            data    = np.ones(len(indices), dtype=self.dtype)
            shape   = (len(indices),N)

            return csr_matrix((data,indices,indptr), shape=shape)


        if isinstance(key, tuple):
            row = key[0]
            col = key[1]

            if isintlike(row):
                #[1,??]
                if isintlike(col):
                    return self._get_single_element(row, col) #[i,j]
                elif isinstance(col, slice):
                    return self._get_row_slice(row, col)      #[i,1:2]
                else:
                    P = extractor(col,self.shape[1]).T        #[i,[1,2]]
                    return self[row,:]*P

            elif isinstance(row, slice):
                #[1:2,??]
                if isintlike(col) or isinstance(col, slice):
                    return self._get_submatrix(row, col)      #[1:2,j]
                else:
                    P = extractor(col,self.shape[1]).T        #[1:2,[1,2]]
                    return self[row,:]*P

            else:
                #[[1,2],??] or [[[1],[2]],??]
                if isintlike(col) or isinstance(col,slice):
                    P = extractor(row, self.shape[0])        #[[1,2],j] or [[1,2],1:2]
                    return (P*self)[:,col]

                else:
                    row = asindices(row)
                    col = asindices(col)
                    if len(row.shape) == 1:
                        if len(row) != len(col):             #[[1,2],[1,2]]
                            raise IndexError('number of row and column indices differ')

                        check_bounds(row, self.shape[0])
                        check_bounds(col, self.shape[1])

                        num_samples = len(row)
                        val = np.empty(num_samples, dtype=self.dtype)
                        csr_sample_values(self.shape[0], self.shape[1],
                                          self.indptr, self.indices, self.data,
                                          num_samples, row, col, val)
                        #val = []
                        #for i,j in zip(row,col):
                        #    val.append(self._get_single_element(i,j))
                        return np.asmatrix(val)

                    elif len(row.shape) == 2:
                        row = np.ravel(row)                   #[[[1],[2]],[1,2]]
                        P = extractor(row, self.shape[0])
                        return (P*self)[:,col]

                    else:
                        raise NotImplementedError('unsupported indexing')

        elif isintlike(key) or isinstance(key,slice):
            return self[key,:]                                #[i] or [1:2]
        else:
            return self[asindices(key),:]                     #[[1,2]]


    def _get_single_element(self,row,col):
        """Returns the single element self[row, col]
        """
        M, N = self.shape
        if (row < 0):
            row += M
        if (col < 0):
            col += N
        if not (0<=row<M) or not (0<=col<N):
            raise IndexError("index out of bounds")

        #TODO make use of sorted indices (if present)

        start = self.indptr[row]
        end   = self.indptr[row+1]
        indxs = np.where(col == self.indices[start:end])[0]

        num_matches = len(indxs)

        if num_matches == 0:
            # entry does not appear in the matrix
            return self.dtype.type(0)
        elif num_matches == 1:
            return self.data[start:end][indxs[0]]
        else:
            raise ValueError('nonzero entry (%d,%d) occurs more than once' % (row,col) )

    def _get_row_slice(self, i, cslice):
        """Returns a copy of row self[i, cslice]
        """
        if i < 0:
            i += self.shape[0]

        if i < 0 or i >= self.shape[0]:
            raise IndexError('index (%d) out of range' % i )

        start, stop, stride = cslice.indices(self.shape[1])

        if stride != 1:
            raise ValueError, "slicing with step != 1 not supported"
        if stop <= start:
            raise ValueError, "slice width must be >= 1"

        #TODO make [i,:] faster
        #TODO implement [i,x:y:z]

        indices = []

        for ind in xrange(self.indptr[i], self.indptr[i+1]):
            if self.indices[ind] >= start and self.indices[ind] < stop:
                indices.append(ind)

        index  = self.indices[indices] - start
        data   = self.data[indices]
        indptr = np.array([0, len(indices)])
        return csr_matrix( (data, index, indptr), shape=(1, stop-start) )

    def _get_submatrix( self, row_slice, col_slice ):
        """Return a submatrix of this matrix (new matrix is created)."""

        M,N = self.shape

        def process_slice( sl, num ):
            if isinstance( sl, slice ):
                i0, i1 = sl.start, sl.stop
                if i0 is None:
                    i0 = 0
                elif i0 < 0:
                    i0 = num + i0

                if i1 is None:
                    i1 = num
                elif i1 < 0:
                    i1 = num + i1

                return i0, i1

            elif isintlike( sl ):
                if sl < 0:
                    sl += num

                return sl, sl + 1

            else:
                raise TypeError('expected slice or scalar')

        def check_bounds( i0, i1, num ):
            if not (0<=i0<num) or not (0<i1<=num) or not (i0<i1):
                raise IndexError( \
                      "index out of bounds: 0<=%d<%d, 0<=%d<%d, %d<%d" %\
                      (i0, num, i1, num, i0, i1) )

        i0, i1 = process_slice( row_slice, M )
        j0, j1 = process_slice( col_slice, N )
        check_bounds( i0, i1, M )
        check_bounds( j0, j1, N )

        indptr, indices, data = get_csr_submatrix( M, N, \
                self.indptr, self.indices, self.data, \
                int(i0), int(i1), int(j0), int(j1) )

        shape =  (i1 - i0, j1 - j0)

        return self.__class__( (data,indices,indptr), shape=shape )



from sputils import _isinstance

def isspmatrix_csr(x):
    return _isinstance(x, csr_matrix)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.