csc.py :  » Math » SciPy » scipy » scipy » sparse » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » SciPy 
SciPy » scipy » scipy » sparse » csc.py
"""Compressed Sparse Column matrix format"""

__docformat__ = "restructuredtext en"

__all__ = ['csc_matrix', 'isspmatrix_csc']

from warnings import warn

import numpy as np

from sparsetools import csc_tocsr
from sputils import upcast,isintlike

from compressed import _cs_matrix


class csc_matrix(_cs_matrix):
    """
    Compressed Sparse Column matrix

    This can be instantiated in several ways:
        csc_matrix(D)
            with a dense matrix or rank-2 ndarray D

        csc_matrix(S)
            with another sparse matrix S (equivalent to S.tocsc())

        csc_matrix((M, N), [dtype])
            to construct an empty matrix with shape (M, N)
            dtype is optional, defaulting to dtype='d'.

        csc_matrix((data, ij), [shape=(M, N)])
            where ``data`` and ``ij`` satisfy the relationship
            ``a[ij[0, k], ij[1, k]] = data[k]``

        csc_matrix((data, indices, indptr), [shape=(M, N)])
            is the standard CSC representation where the row indices for
            column i are stored in ``indices[indptr[i]:indices[i+1]]``
            and their corresponding values are stored in
            ``data[indptr[i]:indptr[i+1]]``.  If the shape parameter is
            not supplied, the matrix dimensions are inferred from
            the index arrays.

    Notes
    -----
    Advantages of the CSC format
        - efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
        - efficient column slicing
        - fast matrix vector products (CSR, BSR may be faster)

    Disadvantages of the CSC format
      - slow row slicing operations (consider CSR)
      - changes to the sparsity structure are expensive (consider LIL or DOK)


    Examples
    ========

    >>> from scipy.sparse import *
    >>> from scipy import *
    >>> csc_matrix( (3,4), dtype=int8 ).todense()
    matrix([[0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0]], dtype=int8)

    >>> row = array([0,2,2,0,1,2])
    >>> col = array([0,0,1,2,2,2])
    >>> data = array([1,2,3,4,5,6])
    >>> csc_matrix( (data,(row,col)), shape=(3,3) ).todense()
    matrix([[1, 0, 4],
            [0, 0, 5],
            [2, 3, 6]])

    >>> indptr = array([0,2,3,6])
    >>> indices = array([0,2,2,0,1,2])
    >>> data = array([1,2,3,4,5,6])
    >>> csc_matrix( (data,indices,indptr), shape=(3,3) ).todense()
    matrix([[1, 0, 4],
            [0, 0, 5],
            [2, 3, 6]])

    """

    def __getattr__(self, attr):
        if attr == 'rowind':
            warn("rowind attribute no longer in use. Use .indices instead",
                    DeprecationWarning)
            return self.indices
        else:
            return _cs_matrix.__getattr__(self, attr)

    def transpose(self, copy=False):
        from csr import csr_matrix
        M,N = self.shape
        return csr_matrix((self.data,self.indices,self.indptr),(N,M),copy=copy)

    def __iter__(self):
        csr = self.tocsr()
        for r in xrange(self.shape[0]):
            yield csr[r,:]

    @np.deprecate
    def rowcol(self, ind):
        #TODO remove after 0.7
        row = self.indices[ind]
        col = np.searchsorted(self.indptr, ind+1) - 1
        return (row, col)

    def tocsc(self, copy=False):
        if copy:
            return self.copy()
        else:
            return self

    def tocsr(self):
        M,N = self.shape
        indptr  = np.empty(M + 1,    dtype=np.intc)
        indices = np.empty(self.nnz, dtype=np.intc)
        data    = np.empty(self.nnz, dtype=upcast(self.dtype))

        csc_tocsr(M, N, \
                 self.indptr, self.indices, self.data, \
                 indptr, indices, data)

        from csr import csr_matrix
        A = csr_matrix((data, indices, indptr), shape=self.shape)
        A.has_sorted_indices = True
        return A


    def __getitem__(self, key):
        # use CSR to implement fancy indexing
        if isinstance(key, tuple):
            row = key[0]
            col = key[1]

            if isintlike(row) or isinstance(row, slice):
                return self.T[col,row].T
            else:
                #[[1,2],??] or [[[1],[2]],??]
                if isintlike(col) or isinstance(col,slice):
                    return self.T[col,row].T
                else:
                    row = np.asarray(row, dtype=np.intc)
                    col = np.asarray(col, dtype=np.intc)
                    if len(row.shape) == 1:
                        return self.T[col,row]
                    elif len(row.shape) == 2:
                        row = row.reshape(-1)
                        col = col.reshape(-1,1)
                        return self.T[col,row].T
                    else:
                        raise NotImplementedError('unsupported indexing')

            return self.T[col,row].T
        elif isintlike(key) or isinstance(key,slice):
            return self.T[:,key].T                              #[i] or [1:2]
        else:
            return self.T[:,key].T                              #[[1,2]]


    # these functions are used by the parent class (_cs_matrix)
    # to remove redudancy between csc_matrix and csr_matrix
    def _swap(self,x):
        """swap the members of x if this is a column-oriented matrix
        """
        return (x[1],x[0])


from sputils import _isinstance

def isspmatrix_csc(x):
    return _isinstance(x, csc_matrix)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.