compressed.py :  » Math » SciPy » scipy » scipy » sparse » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » SciPy 
SciPy » scipy » scipy » sparse » compressed.py
"""Base class for sparse matrix formats using compressed storage
"""

__all__ = []

from warnings import warn

import numpy as np

from base import spmatrix,isspmatrix,SparseEfficiencyWarning
from data import _data_matrix
import sparsetools
from sputils import upcast,to_native,isdense,isshape,getdtype,\
        isscalarlike, isintlike


class _cs_matrix(_data_matrix):
    """base matrix class for compressed row and column oriented matrices"""

    def __init__(self, arg1, shape=None, dtype=None, copy=False, dims=None, nzmax=None):
        _data_matrix.__init__(self)

        if dims is not None:
            warn("dims= is deprecated, use shape= instead", DeprecationWarning)
            shape=dims

        if nzmax is not None:
            warn("nzmax= is deprecated", DeprecationWarning)


        if isspmatrix(arg1):
            if arg1.format == self.format and copy:
                arg1 = arg1.copy()
            else:
                arg1 = arg1.asformat(self.format)
            self._set_self( arg1 )

        elif isinstance(arg1, tuple):
            if isshape(arg1):
                # It's a tuple of matrix dimensions (M, N)
                # create empty matrix
                self.shape = arg1   #spmatrix checks for errors here
                M, N = self.shape
                self.data    = np.zeros(0, getdtype(dtype, default=float))
                self.indices = np.zeros(0, np.intc)
                self.indptr  = np.zeros(self._swap((M,N))[0] + 1, dtype=np.intc)
            else:
                if len(arg1) == 2:
                    # (data, ij) format
                    from coo import coo_matrix
                    other = self.__class__( coo_matrix(arg1, shape=shape) )
                    self._set_self( other )
                elif len(arg1) == 3:
                    # (data, indices, indptr) format
                    (data, indices, indptr) = arg1
                    self.indices = np.array(indices, copy=copy)
                    self.indptr  = np.array(indptr, copy=copy)
                    self.data    = np.array(data, copy=copy, dtype=getdtype(dtype, data))
                else:
                    raise ValueError, "unrecognized %s_matrix constructor usage" %\
                            self.format

        else:
            #must be dense
            try:
                arg1 = np.asarray(arg1)
            except:
                raise ValueError, "unrecognized %s_matrix constructor usage" % \
                        self.format
            from coo import coo_matrix
            self._set_self( self.__class__(coo_matrix(arg1, dtype=dtype)) )

        # Read matrix dimensions given, if any
        if shape is not None:
            self.shape = shape   # spmatrix will check for errors
        else:
            if self.shape is None:
                # shape not already set, try to infer dimensions
                try:
                    major_dim = len(self.indptr) - 1
                    minor_dim = self.indices.max() + 1
                except:
                    raise ValueError,'unable to infer matrix dimensions'
                else:
                    self.shape = self._swap((major_dim,minor_dim))

        if dtype is not None:
            self.data = self.data.astype(dtype)

        self.check_format(full_check=False)

    def getnnz(self):
        return self.indptr[-1]
    nnz = property(fget=getnnz)


    def _set_self(self, other, copy=False):
        """take the member variables of other and assign them to self"""

        if copy:
            other = other.copy()

        self.data    = other.data
        self.indices = other.indices
        self.indptr  = other.indptr
        self.shape   = other.shape

    def check_format(self, full_check=True):
        """check whether the matrix format is valid

        Parameters
        ==========

            - full_check : {bool}
                - True  - rigorous check, O(N) operations : default
                - False - basic check, O(1) operations

        """
        #use _swap to determine proper bounds
        major_name,minor_name = self._swap(('row','column'))
        major_dim,minor_dim = self._swap(self.shape)

        # index arrays should have integer data types
        if self.indptr.dtype.kind != 'i':
            warn("indptr array has non-integer dtype (%s)" \
                    % self.indptr.dtype.name )
        if self.indices.dtype.kind != 'i':
            warn("indices array has non-integer dtype (%s)" \
                    % self.indices.dtype.name )

        # only support 32-bit ints for now
        self.indptr  = np.asarray(self.indptr,  dtype=np.intc)
        self.indices = np.asarray(self.indices, dtype=np.intc)
        self.data    = to_native(self.data)

        # check array shapes
        if np.rank(self.data) != 1 or np.rank(self.indices) != 1 or np.rank(self.indptr) != 1:
            raise ValueError('data, indices, and indptr should be rank 1')

        # check index pointer
        if (len(self.indptr) != major_dim + 1 ):
            raise ValueError, \
                "index pointer size (%d) should be (%d)" % \
                 (len(self.indptr), major_dim + 1)
        if (self.indptr[0] != 0):
            raise ValueError,"index pointer should start with 0"

        # check index and data arrays
        if (len(self.indices) != len(self.data)):
            raise ValueError,"indices and data should have the same size"
        if (self.indptr[-1] > len(self.indices)):
            raise ValueError, \
                  "Last value of index pointer should be less than "\
                  "the size of index and data arrays"

        self.prune()

        if full_check:
            #check format validity (more expensive)
            if self.nnz > 0:
                if self.indices.max() >= minor_dim:
                    raise ValueError, "%s index values must be < %d" % \
                            (minor_name,minor_dim)
                if self.indices.min() < 0:
                    raise ValueError, "%s index values must be >= 0" % \
                            minor_name
                if np.diff(self.indptr).min() < 0:
                    raise ValueError,'index pointer values must form a " \
                                        "non-decreasing sequence'

        #if not self.has_sorted_indices():
        #    warn('Indices were not in sorted order.  Sorting indices.')
        #    self.sort_indices()
        #    assert(self.has_sorted_indices())
        #TODO check for duplicates?


    def __add__(self,other):
        # First check if argument is a scalar
        if isscalarlike(other):
            # Now we would add this scalar to every element.
            raise NotImplementedError, 'adding a scalar to a CSC or CSR ' \
                  'matrix is not supported'
        elif isspmatrix(other):
            if (other.shape != self.shape):
                raise ValueError, "inconsistent shapes"

            return self._binopt(other,'_plus_')
        elif isdense(other):
            # Convert this matrix to a dense matrix and add them
            return self.todense() + other
        else:
            raise NotImplementedError

    def __radd__(self,other):
        return self.__add__(other)

    def __sub__(self,other):
        # First check if argument is a scalar
        if isscalarlike(other):
            # Now we would add this scalar to every element.
            raise NotImplementedError, 'adding a scalar to a sparse ' \
                  'matrix is not supported'
        elif isspmatrix(other):
            if (other.shape != self.shape):
                raise ValueError, "inconsistent shapes"

            return self._binopt(other,'_minus_')
        elif isdense(other):
            # Convert this matrix to a dense matrix and subtract them
            return self.todense() - other
        else:
            raise NotImplementedError

    def __rsub__(self,other):  # other - self
        #note: this can't be replaced by other + (-self) for unsigned types
        if isscalarlike(other):
            # Now we would add this scalar to every element.
            raise NotImplementedError, 'adding a scalar to a sparse ' \
                  'matrix is not supported'
        elif isdense(other):
            # Convert this matrix to a dense matrix and subtract them
            return other - self.todense()
        else:
            raise NotImplementedError


    def __truediv__(self,other):
        if isscalarlike(other):
            return self * (1./other)

        elif isspmatrix(other):
            if other.shape != self.shape:
                raise ValueError('inconsistent shapes')

            return self._binopt(other,'_eldiv_')

        else:
            raise NotImplementedError


    def multiply(self, other):
        """Point-wise multiplication by another matrix
        """
        if other.shape != self.shape:
            raise ValueError('inconsistent shapes')

        if isdense(other):
            return np.multiply(self.todense(),other)
        else:
            other = self.__class__(other)
            return self._binopt(other,'_elmul_')


    ###########################
    # Multiplication handlers #
    ###########################

    def _mul_vector(self, other):
        M,N = self.shape

        #output array
        result = np.zeros( self.shape[0], dtype=upcast(self.dtype,other.dtype) )

        # csr_matvec or csc_matvec
        fn = getattr(sparsetools,self.format + '_matvec')
        fn(M, N, self.indptr, self.indices, self.data, other, result)

        return result


    def _mul_multivector(self, other):
        M,N = self.shape
        n_vecs = other.shape[1] #number of column vectors

        result = np.zeros( (M,n_vecs), dtype=upcast(self.dtype,other.dtype) )

        # csr_matvecs or csc_matvecs
        fn = getattr(sparsetools,self.format + '_matvecs')
        fn(M, N, n_vecs, self.indptr, self.indices, self.data, other.ravel(), result.ravel())

        return result


    def _mul_sparse_matrix(self, other):
        M, K1 = self.shape
        K2, N = other.shape

        major_axis = self._swap((M,N))[0]
        indptr = np.empty(major_axis + 1, dtype=np.intc)

        other = self.__class__(other) #convert to this format
        fn = getattr(sparsetools, self.format + '_matmat_pass1')
        fn( M, N, self.indptr, self.indices, \
                  other.indptr, other.indices, \
                  indptr)

        nnz = indptr[-1]
        indices = np.empty(nnz, dtype=np.intc)
        data    = np.empty(nnz, dtype=upcast(self.dtype,other.dtype))

        fn = getattr(sparsetools, self.format + '_matmat_pass2')
        fn( M, N, self.indptr, self.indices, self.data, \
                  other.indptr, other.indices, other.data, \
                  indptr, indices, data)

        return self.__class__((data,indices,indptr),shape=(M,N))


    @np.deprecate
    def getdata(self, ind):
        return self.data[ind]

    def diagonal(self):
        """Returns the main diagonal of the matrix
        """
        #TODO support k-th diagonal
        fn = getattr(sparsetools, self.format + "_diagonal")
        y = np.empty( min(self.shape), dtype=upcast(self.dtype) )
        fn(self.shape[0], self.shape[1], self.indptr, self.indices, self.data, y)
        return y

    def sum(self, axis=None):
        """Sum the matrix over the given axis.  If the axis is None, sum
        over both rows and columns, returning a scalar.
        """
        # The spmatrix base class already does axis=0 and axis=1 efficiently
        # so we only do the case axis=None here
        if axis is None:
            return self.data.sum()
        else:
            return spmatrix.sum(self,axis)
            raise ValueError, "axis out of bounds"

    #######################
    # Getting and Setting #
    #######################

    def __getitem__(self, key):
        if isinstance(key, tuple):
            row = key[0]
            col = key[1]

            #TODO implement CSR[ [1,2,3], X ] with sparse matmat
            #TODO make use of sorted indices

            if isintlike(row) and isintlike(col):
                return self._get_single_element(row,col)
            else:
                major,minor = self._swap((row,col))
                if isintlike(major) and isinstance(minor,slice):
                    minor_shape = self._swap(self.shape)[1]
                    start, stop, stride = minor.indices(minor_shape)
                    out_shape   = self._swap( (1, stop-start) )
                    return self._get_slice( major, start, stop, stride, out_shape)
                elif isinstance( row, slice) or isinstance(col, slice):
                    return self._get_submatrix( row, col )
                else:
                    raise NotImplementedError

        elif isintlike(key):
            return self[key, :]
        else:
            raise IndexError, "invalid index"


    def _get_single_element(self,row,col):
        M, N = self.shape
        if (row < 0):
            row += M
        if (col < 0):
            col += N
        if not (0<=row<M) or not (0<=col<N):
            raise IndexError("index out of bounds")

        major_index, minor_index = self._swap((row,col))

        start = self.indptr[major_index]
        end   = self.indptr[major_index+1]
        indxs = np.where(minor_index == self.indices[start:end])[0]

        num_matches = len(indxs)

        if num_matches == 0:
            # entry does not appear in the matrix
            return 0
        elif num_matches == 1:
            return self.data[start:end][indxs[0]]
        else:
            raise ValueError('nonzero entry (%d,%d) occurs more than once' % (row,col))

    def _get_slice(self, i, start, stop, stride, shape):
        """Returns a copy of the elements
            [i, start:stop:string] for row-oriented matrices
            [start:stop:string, i] for column-oriented matrices
        """
        if stride != 1:
            raise ValueError, "slicing with step != 1 not supported"
        if stop <= start:
            raise ValueError, "slice width must be >= 1"

        #TODO make [i,:] faster
        #TODO implement [i,x:y:z]

        indices = []

        for ind in xrange(self.indptr[i], self.indptr[i+1]):
            if self.indices[ind] >= start and self.indices[ind] < stop:
                indices.append(ind)

        index  = self.indices[indices] - start
        data   = self.data[indices]
        indptr = np.array([0, len(indices)])
        return self.__class__((data, index, indptr), shape=shape, \
                              dtype=self.dtype)

    def _get_submatrix( self, slice0, slice1 ):
        """Return a submatrix of this matrix (new matrix is created)."""

        slice0, slice1 = self._swap((slice0,slice1))
        shape0, shape1 = self._swap(self.shape)
        def _process_slice( sl, num ):
            if isinstance( sl, slice ):
                i0, i1 = sl.start, sl.stop
                if i0 is None:
                    i0 = 0
                elif i0 < 0:
                    i0 = num + i0

                if i1 is None:
                    i1 = num
                elif i1 < 0:
                    i1 = num + i1

                return i0, i1

            elif np.isscalar( sl ):
                if sl < 0:
                    sl += num

                return sl, sl + 1

            else:
                return sl[0], sl[1]

        def _in_bounds( i0, i1, num ):
            if not (0<=i0<num) or not (0<i1<=num) or not (i0<i1):
                raise IndexError,\
                      "index out of bounds: 0<=%d<%d, 0<=%d<%d, %d<%d" %\
                      (i0, num, i1, num, i0, i1)

        i0, i1 = _process_slice( slice0, shape0 )
        j0, j1 = _process_slice( slice1, shape1 )
        _in_bounds( i0, i1, shape0 )
        _in_bounds( j0, j1, shape1 )

        aux = sparsetools.get_csr_submatrix( shape0, shape1,
                                             self.indptr, self.indices,
                                             self.data,
                                             i0, i1, j0, j1 )

        data, indices, indptr = aux[2], aux[1], aux[0]
        shape = self._swap( (i1 - i0, j1 - j0) )

        return self.__class__( (data,indices,indptr), shape=shape )


    def __setitem__(self, key, val):
        if isinstance(key, tuple):
            row,col = key
            if not (isscalarlike(row) and isscalarlike(col)):
                raise NotImplementedError("Fancy indexing in assignment not "
                                          "supported for csr matrices.")
            M, N = self.shape
            if (row < 0):
                row += M
            if (col < 0):
                col += N
            if not (0<=row<M) or not (0<=col<N):
                raise IndexError, "index out of bounds"

            major_index, minor_index = self._swap((row,col))

            start = self.indptr[major_index]
            end   = self.indptr[major_index+1]
            indxs = np.where(minor_index == self.indices[start:end])[0]

            num_matches = len(indxs)
    
            
            if not np.isscalar(val):
                raise ValueError('setting an array element with a sequence')

            val = self.dtype.type(val) 

            if num_matches == 0:
                #entry not already present
                warn('changing the sparsity structure of a %s_matrix is expensive. ' \
                        'lil_matrix is more efficient.' % self.format, \
                        SparseEfficiencyWarning)

                if self.has_sorted_indices:
                    # preserve sorted order
                    newindx = start + self.indices[start:end].searchsorted(minor_index)
                else:
                    newindx = start

                val         = np.array([val],         dtype=self.data.dtype)
                minor_index = np.array([minor_index], dtype=self.indices.dtype)

                self.data    = np.concatenate((self.data[:newindx],    val,         self.data[newindx:]))
                self.indices = np.concatenate((self.indices[:newindx], minor_index, self.indices[newindx:]))
                self.indptr  = self.indptr.copy()

                self.indptr[major_index+1:] += 1

            elif num_matches == 1:
                #entry appears exactly once
                self.data[start:end][indxs[0]] = val
            else:
                #entry appears more than once
                raise ValueError,'nonzero entry (%d,%d) occurs more than once' % (row,col)

            self.check_format(full_check=True)
        else:
            # We should allow slices here!
            raise IndexError, "invalid index"

    ######################
    # Conversion methods #
    ######################

    def todia(self):
        return self.tocoo(copy=False).todia()

    def todok(self):
        return self.tocoo(copy=False).todok()

    def tocoo(self,copy=True):
        """Return a COOrdinate representation of this matrix

        When copy=False the index and data arrays are not copied.
        """
        major_dim,minor_dim = self._swap(self.shape)

        data = self.data
        minor_indices = self.indices

        if copy:
            data = data.copy()
            minor_indices = minor_indices.copy()

        major_indices = np.empty(len(minor_indices), dtype=np.intc)

        sparsetools.expandptr(major_dim,self.indptr,major_indices)

        row,col = self._swap((major_indices,minor_indices))

        from coo import coo_matrix
        return coo_matrix((data,(row,col)), self.shape)

    def toarray(self):
        return self.tocoo(copy=False).toarray()

    ##############################################################
    # methods that examine or modify the internal data structure #
    ##############################################################

    def eliminate_zeros(self):
        """Remove zero entries from the matrix

        The is an *in place* operation
        """
        fn = sparsetools.csr_eliminate_zeros
        M,N = self._swap(self.shape)
        fn( M, N, self.indptr, self.indices, self.data)

        self.prune() #nnz may have changed

    def sum_duplicates(self):
        """Eliminate duplicate matrix entries by adding them together

        The is an *in place* operation
        """
        self.sort_indices()

        fn = sparsetools.csr_sum_duplicates
        M,N = self._swap(self.shape)
        fn( M, N, self.indptr, self.indices, self.data)

        self.prune() #nnz may have changed


    def __get_sorted(self):
        """Determine whether the matrix has sorted indices

        Returns
            - True: if the indices of the matrix are in sorted order
            - False: otherwise

        """

        #first check to see if result was cached
        if not hasattr(self,'__has_sorted_indices'):
            fn = sparsetools.csr_has_sorted_indices
            self.__has_sorted_indices = \
                    fn( len(self.indptr) - 1, self.indptr, self.indices)
        return self.__has_sorted_indices

    def __set_sorted(self, val):
        self.__has_sorted_indices = bool(val)

    has_sorted_indices = property(fget=__get_sorted, fset=__set_sorted)

    def sorted_indices(self):
        """Return a copy of this matrix with sorted indices
        """
        A = self.copy()
        A.sort_indices()
        return A

        # an alternative that has linear complexity is the following
        # although the previous option is typically faster
        #return self.toother().toother()

    def sort_indices(self):
        """Sort the indices of this matrix *in place*
        """

        if not self.has_sorted_indices:
            fn = sparsetools.csr_sort_indices
            fn( len(self.indptr) - 1, self.indptr, self.indices, self.data)
            self.has_sorted_indices = True

    #TODO remove after 0.7
    def ensure_sorted_indices(self, inplace=False):
        """Return a copy of this matrix where the column indices are sorted
        """
        warn('ensure_sorted_indices is deprecated, ' \
                'use sorted_indices() or sort_indices() instead', \
                DeprecationWarning)

        if inplace:
            self.sort_indices()
        else:
            return self.sorted_indices()

    def prune(self):
        """Remove empty space after all non-zero elements.
        """
        major_dim = self._swap(self.shape)[0]

        if len(self.indptr) != major_dim + 1:
            raise ValueError('index pointer has invalid length')
        if len(self.indices) < self.nnz:
            raise ValueError('indices array has fewer than nnz elements')
        if len(self.data) < self.nnz:
            raise ValueError('data array has fewer than nnz elements')

        self.data    = self.data[:self.nnz]
        self.indices = self.indices[:self.nnz]


    ###################
    # utility methods #
    ###################

    # needed by _data_matrix
    def _with_data(self,data,copy=True):
        """Returns a matrix with the same sparsity structure as self,
        but with different data.  By default the structure arrays
        (i.e. .indptr and .indices) are copied.
        """
        if copy:
            return self.__class__((data,self.indices.copy(),self.indptr.copy()), \
                                   shape=self.shape,dtype=data.dtype)
        else:
            return self.__class__((data,self.indices,self.indptr), \
                                   shape=self.shape,dtype=data.dtype)

    def _binopt(self, other, op):
        """apply the binary operation fn to two sparse matrices"""
        other = self.__class__(other)

        # e.g. csr_plus_csr, csr_minus_csr, etc.
        fn = getattr(sparsetools, self.format + op + self.format)

        maxnnz  = self.nnz + other.nnz
        indptr  = np.empty_like(self.indptr)
        indices = np.empty(maxnnz, dtype=np.intc)
        data    = np.empty(maxnnz, dtype=upcast(self.dtype,other.dtype))

        fn(self.shape[0], self.shape[1], \
                self.indptr,  self.indices,  self.data,
                other.indptr, other.indices, other.data,
                indptr, indices, data)

        actual_nnz = indptr[-1]
        indices = indices[:actual_nnz]
        data    = data[:actual_nnz]
        if actual_nnz < maxnnz / 2:
            #too much waste, trim arrays
            indices = indices.copy()
            data    = data.copy()

        A = self.__class__((data, indices, indptr), shape=self.shape)

        return A
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.