slsqp.py :  » Math » SciPy » scipy » scipy » optimize » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » SciPy 
SciPy » scipy » scipy » optimize » slsqp.py
"""This module implements the Sequential Least SQuares Programming optimization
algorithm (SLSQP), orginally developed by Dieter Kraft.

See http://www.netlib.org/toms/733

"""

__all__ = ['approx_jacobian','fmin_slsqp']

from _slsqp import slsqp
from numpy import zeros,array,linalg,append,asfarray,concatenate,finfo,\
                  sqrt, vstack
from optimize import approx_fprime,wrap_function

__docformat__ = "restructuredtext en"

_epsilon = sqrt(finfo(float).eps)

def approx_jacobian(x,func,epsilon,*args):
    """Approximate the Jacobian matrix of a callable function.

    Parameters
    ----------
    x : array_like
        The state vector at which to compute the Jacobian matrix.
    func : callable f(x, *args)
        The vector-valued function.
    epsilon : float\
        The peturbation used to determine the partial derivatives.
    *args : tuple
        Additional arguments passed to func.

    Returns
    -------
    An array of dimensions ``(lenf, lenx)`` where ``lenf`` is the length
    of the outputs of `func`, and ``lenx`` is the number of elements in
    `x`.

    Notes
    -----
    The approximation is done using forward differences.

    """
    x0 = asfarray(x)
    f0 = func(*((x0,)+args))
    jac = zeros([len(x0),len(f0)])
    dx = zeros(len(x0))
    for i in range(len(x0)):
        dx[i] = epsilon
        jac[i] = (func(*((x0+dx,)+args)) - f0)/epsilon
        dx[i] = 0.0
    return jac.transpose()


def fmin_slsqp( func, x0 , eqcons=[], f_eqcons=None, ieqcons=[], f_ieqcons=None,
                bounds = [], fprime = None, fprime_eqcons=None,
                fprime_ieqcons=None, args = (), iter = 100, acc = 1.0E-6,
                iprint = 1, full_output = 0, epsilon = _epsilon ):
    """
    Minimize a function using Sequential Least SQuares Programming

    Python interface function for the SLSQP Optimization subroutine
    originally implemented by Dieter Kraft.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function.
    x0 : ndarray of float
        Initial guess for the independent variable(s).
    eqcons : list
        A list of functions of length n such that
        eqcons[j](x0,*args) == 0.0 in a successfully optimized
        problem.
    f_eqcons : callable f(x,*args)
        Returns an array in which each element must equal 0.0 in a
        successfully optimized problem.  If f_eqcons is specified,
        eqcons is ignored.
    ieqcons : list
        A list of functions of length n such that
        ieqcons[j](x0,*args) >= 0.0 in a successfully optimized
        problem.
    f_ieqcons : callable f(x0,*args)
        Returns an array in which each element must be greater or
        equal to 0.0 in a successfully optimized problem.  If
        f_ieqcons is specified, ieqcons is ignored.
    bounds : list
        A list of tuples specifying the lower and upper bound
        for each independent variable [(xl0, xu0),(xl1, xu1),...]
    fprime : callable `f(x,*args)`
        A function that evaluates the partial derivatives of func.
    fprime_eqcons : callable `f(x,*args)`
        A function of the form `f(x, *args)` that returns the m by n
        array of equality constraint normals.  If not provided,
        the normals will be approximated. The array returned by
        fprime_eqcons should be sized as ( len(eqcons), len(x0) ).
    fprime_ieqcons : callable `f(x,*args)`
        A function of the form `f(x, *args)` that returns the m by n
        array of inequality constraint normals.  If not provided,
        the normals will be approximated. The array returned by
        fprime_ieqcons should be sized as ( len(ieqcons), len(x0) ).
    args : sequence
        Additional arguments passed to func and fprime.
    iter : int
        The maximum number of iterations.
    acc : float
        Requested accuracy.
    iprint : int
        The verbosity of fmin_slsqp :

        * iprint <= 0 : Silent operation
        * iprint == 1 : Print summary upon completion (default)
        * iprint >= 2 : Print status of each iterate and summary
    full_output : bool
        If False, return only the minimizer of func (default).
        Otherwise, output final objective function and summary
        information.
    epsilon : float
        The step size for finite-difference derivative estimates.

    Returns
    -------
    x : ndarray of float
        The final minimizer of func.
    fx : ndarray of float, if full_output is true
        The final value of the objective function.
    its : int, if full_output is true
        The number of iterations.
    imode : int, if full_output is true
        The exit mode from the optimizer (see below).
    smode : string, if full_output is true
        Message describing the exit mode from the optimizer.

    Notes
    -----
    Exit modes are defined as follows ::

        -1 : Gradient evaluation required (g & a)
         0 : Optimization terminated successfully.
         1 : Function evaluation required (f & c)
         2 : More equality constraints than independent variables
         3 : More than 3*n iterations in LSQ subproblem
         4 : Inequality constraints incompatible
         5 : Singular matrix E in LSQ subproblem
         6 : Singular matrix C in LSQ subproblem
         7 : Rank-deficient equality constraint subproblem HFTI
         8 : Positive directional derivative for linesearch
         9 : Iteration limit exceeded

    Examples
    --------
    Examples are given :ref:`in the tutorial <tutorial-sqlsp>`.

    """

    exit_modes = { -1 : "Gradient evaluation required (g & a)",
                    0 : "Optimization terminated successfully.",
                    1 : "Function evaluation required (f & c)",
                    2 : "More equality constraints than independent variables",
                    3 : "More than 3*n iterations in LSQ subproblem",
                    4 : "Inequality constraints incompatible",
                    5 : "Singular matrix E in LSQ subproblem",
                    6 : "Singular matrix C in LSQ subproblem",
                    7 : "Rank-deficient equality constraint subproblem HFTI",
                    8 : "Positive directional derivative for linesearch",
                    9 : "Iteration limit exceeded" }

    # Now do a lot of function wrapping

    # Wrap func
    feval, func = wrap_function(func, args)
    # Wrap fprime, if provided, or approx_fprime if not
    if fprime:
        geval, fprime = wrap_function(fprime,args)
    else:
        geval, fprime = wrap_function(approx_fprime,(func,epsilon))

    if f_eqcons:
        # Equality constraints provided via f_eqcons
        ceval, f_eqcons = wrap_function(f_eqcons,args)
        if fprime_eqcons:
            # Wrap fprime_eqcons
            geval, fprime_eqcons = wrap_function(fprime_eqcons,args)
        else:
            # Wrap approx_jacobian
            geval, fprime_eqcons = wrap_function(approx_jacobian,
                                                 (f_eqcons,epsilon))
    else:
        # Equality constraints provided via eqcons[]
        eqcons_prime = []
        for i in range(len(eqcons)):
            eqcons_prime.append(None)
            if eqcons[i]:
                # Wrap eqcons and eqcons_prime
                ceval, eqcons[i] = wrap_function(eqcons[i],args)
                geval, eqcons_prime[i] = wrap_function(approx_fprime,
                                                       (eqcons[i],epsilon))

    if f_ieqcons:
        # Inequality constraints provided via f_ieqcons
        ceval, f_ieqcons = wrap_function(f_ieqcons,args)
        if fprime_ieqcons:
            # Wrap fprime_ieqcons
            geval, fprime_ieqcons = wrap_function(fprime_ieqcons,args)
        else:
            # Wrap approx_jacobian
            geval, fprime_ieqcons = wrap_function(approx_jacobian,
                                                  (f_ieqcons,epsilon))
    else:
        # Inequality constraints provided via ieqcons[]
        ieqcons_prime = []
        for i in range(len(ieqcons)):
            ieqcons_prime.append(None)
            if ieqcons[i]:
                # Wrap ieqcons and ieqcons_prime
                ceval, ieqcons[i] = wrap_function(ieqcons[i],args)
                geval, ieqcons_prime[i] = wrap_function(approx_fprime,
                                                        (ieqcons[i],epsilon))


    # Transform x0 into an array.
    x = asfarray(x0).flatten()

    # Set the parameters that SLSQP will need
    # meq = The number of equality constraints
    if f_eqcons:
        meq = len(f_eqcons(x))
    else:
        meq = len(eqcons)
    if f_ieqcons:
        mieq = len(f_ieqcons(x))
    else:
        mieq = len(ieqcons)
    # m = The total number of constraints
    m = meq + mieq
    # la = The number of constraints, or 1 if there are no constraints
    la = array([1,m]).max()
    # n = The number of independent variables
    n = len(x)

    # Define the workspaces for SLSQP
    n1 = n+1
    mineq = m - meq + n1 + n1
    len_w = (3*n1+m)*(n1+1)+(n1-meq+1)*(mineq+2) + 2*mineq+(n1+mineq)*(n1-meq) \
            + 2*meq + n1 +(n+1)*n/2 + 2*m + 3*n + 3*n1 + 1
    len_jw = mineq
    w = zeros(len_w)
    jw = zeros(len_jw)

    # Decompose bounds into xl and xu
    if len(bounds) == 0:
        bounds = [(-1.0E12, 1.0E12) for i in range(n)]
    elif len(bounds) != n:
        raise IndexError, \
        'SLSQP Error:  If bounds is specified, len(bounds) == len(x0)'
    else:
        for i in range(len(bounds)):
            if bounds[i][0] > bounds[i][1]:
                raise ValueError, \
                'SLSQP Error: lb > ub in bounds[' + str(i) +']  ' + str(bounds[4])

    xl = array( [ b[0] for b in bounds ] )
    xu = array( [ b[1] for b in bounds ] )



    # Initialize the iteration counter and the mode value
    mode = array(0,int)
    acc = array(acc,float)
    majiter = array(iter,int)
    majiter_prev = 0

    # Print the header if iprint >= 2
    if iprint >= 2:
        print "%5s %5s %16s %16s" % ("NIT","FC","OBJFUN","GNORM")

    while 1:

        if mode == 0 or mode == 1: # objective and constraint evaluation requird

            # Compute objective function
            fx = func(x)
            # Compute the constraints
            if f_eqcons:
                c_eq = f_eqcons(x)
            else:
                c_eq = array([ eqcons[i](x) for i in range(meq) ])
            if f_ieqcons:
                c_ieq = f_ieqcons(x)
            else:
                c_ieq = array([ ieqcons[i](x) for i in range(len(ieqcons)) ])

            # Now combine c_eq and c_ieq into a single matrix
            if m == 0:
                # no constraints
                c = zeros([la])
            else:
                # constraints exist
                if meq > 0 and mieq == 0:
                    # only equality constraints
                    c = c_eq
                if meq == 0 and mieq > 0:
                    # only inequality constraints
                    c = c_ieq
                if meq > 0 and mieq > 0:
                    # both equality and inequality constraints exist
                    c = append(c_eq, c_ieq)

        if mode == 0 or mode == -1: # gradient evaluation required

            # Compute the derivatives of the objective function
            # For some reason SLSQP wants g dimensioned to n+1
            g = append(fprime(x),0.0)

            # Compute the normals of the constraints
            if fprime_eqcons:
                a_eq = fprime_eqcons(x)
            else:
                a_eq = zeros([meq,n])
                for i in range(meq):
                    a_eq[i] = eqcons_prime[i](x)

            if fprime_ieqcons:
                a_ieq = fprime_ieqcons(x)
            else:
                a_ieq = zeros([mieq,n])
                for i in range(mieq):
                    a_ieq[i] = ieqcons_prime[i](x)

            # Now combine a_eq and a_ieq into a single a matrix
            if m == 0:
                # no constraints
                a = zeros([la,n])
            elif meq > 0 and mieq == 0:
                # only equality constraints
                a = a_eq
            elif meq == 0 and mieq > 0:
                # only inequality constraints
                a = a_ieq
            elif meq > 0 and mieq > 0:
                # both equality and inequality constraints exist
                a = vstack((a_eq,a_ieq))
            a = concatenate((a,zeros([la,1])),1)

        # Call SLSQP
        slsqp(m, meq, x, xl, xu, fx, c, g, a, acc, majiter, mode, w, jw)

        # Print the status of the current iterate if iprint > 2 and the
        # major iteration has incremented
        if iprint >= 2 and majiter > majiter_prev:
            print "%5i %5i % 16.6E % 16.6E" % (majiter,feval[0],
                                               fx,linalg.norm(g))

        # If exit mode is not -1 or 1, slsqp has completed
        if abs(mode) != 1:
            break

        majiter_prev = int(majiter)

    # Optimization loop complete.  Print status if requested
    if iprint >= 1:
        print exit_modes[int(mode)] + "    (Exit mode " + str(mode) + ')'
        print "            Current function value:", fx
        print "            Iterations:", majiter
        print "            Function evaluations:", feval[0]
        print "            Gradient evaluations:", geval[0]

    if not full_output:
        return x
    else:
        return [list(x),
                float(fx),
                int(majiter),
                int(mode),
                exit_modes[int(mode)] ]
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.