mio5.py :  » Math » SciPy » scipy » scipy » io » matlab » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » SciPy 
SciPy » scipy » scipy » io » matlab » mio5.py
''' Classes for read / write of matlab (TM) 5 files

The matfile specification last found here:

http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/matfile_format.pdf

(as of December 5 2008)
'''

'''
=================================
 Note on functions and mat files
=================================

The document above does not give any hints as to the storage of matlab
function handles, or anonymous function handles.  I had therefore to
guess the format of matlab arrays of ``mxFUNCTION_CLASS`` and
``mxOPAQUE_CLASS`` by looking at example mat files.

``mxFUNCTION_CLASS`` stores all types of matlab functions.  It seems to
contain a struct matrix with a set pattern of fields.  For anonymous
functions, a sub-fields of one of these fields seems to contain the
well-named ``mxOPAQUE_CLASS``. This seems to cotain:

* array flags as for any matlab matrix
* 3 int8 strings
* a matrix

It seems that, whenever the mat file contains a ``mxOPAQUE_CLASS``
instance, there is also an un-named matrix (name == '') at the end of
the mat file.  I'll call this the ``__function_workspace__`` matrix.

When I saved two anonymous functions in a mat file, or appended another
anonymous function to the mat file, there was still only one
``__function_workspace__`` un-named matrix at the end, but larger than
that for a mat file with a single anonymous function, suggesting that
the workspaces for the two functions had been merged.

The ``__function_workspace__`` matrix appears to be of double class
(``mxCLASS_DOUBLE``), but stored as uint8, the memory for which is in
the format of a mini .mat file, without the first 124 bytes of the file
header (the description and the subsystem_offset), but with the version
U2 bytes, and the S2 endian test bytes.  There follow 4 zero bytes,
presumably for 8 byte padding, and then a series of ``miMATRIX``
entries, as in a standard mat file. The ``miMATRIX`` entries appear to
be series of un-named (name == '') matrices, and may also contain arrays
of this same mini-mat format.

I guess that:

* saving an anonymous function back to a mat file will need the
  associated ``__function_workspace__`` matrix saved as well for the
  anonymous function to work correctly.
* appending to a mat file that has a ``__function_workspace__`` would
  involve first pulling off this workspace, appending, checking whether
  there were any more anonymous functions appended, and then somehow
  merging the relevant workspaces, and saving at the end of the mat
  file.

The mat files I was playing with are in ``tests/data``:

* sqr.mat
* parabola.mat
* some_functions.mat

See ``tests/test_mio.py:test_mio_funcs.py`` for a debugging
script I was working with.

'''

# Small fragments of current code adapted from matfile.py by Heiko
# Henkelmann

import os
import time
import sys
import zlib
from cStringIO import StringIO
import warnings

import numpy as np

import scipy.sparse

from miobase import MatFileReader,docfiller,matdims,\
     read_dtype, convert_dtypes, arr_to_chars, arr_dtype_number, \
     MatWriteError, MatReadError

# Reader object for matlab 5 format variables
from mio5_utils import VarReader5

# Constants and helper objects
from mio5_params import MatlabObject,MatlabFunction,\
    miINT8, miUINT8, miINT16, miUINT16, miINT32, miUINT32, \
    miSINGLE, miDOUBLE, miINT64, miUINT64, miMATRIX, \
    miCOMPRESSED, miUTF8, miUTF16, miUTF32, \
    mxCELL_CLASS, mxSTRUCT_CLASS, mxOBJECT_CLASS, mxCHAR_CLASS, \
    mxSPARSE_CLASS, mxDOUBLE_CLASS, mxSINGLE_CLASS, mxINT8_CLASS, \
    mxUINT8_CLASS, mxINT16_CLASS, mxUINT16_CLASS, mxINT32_CLASS, \
    mxUINT32_CLASS, mxINT64_CLASS, mxUINT64_CLASS


mdtypes_template = {
    miINT8: 'i1',
    miUINT8: 'u1',
    miINT16: 'i2',
    miUINT16: 'u2',
    miINT32: 'i4',
    miUINT32: 'u4',
    miSINGLE: 'f4',
    miDOUBLE: 'f8',
    miINT64: 'i8',
    miUINT64: 'u8',
    miUTF8: 'u1',
    miUTF16: 'u2',
    miUTF32: 'u4',
    'file_header': [('description', 'S116'),
                    ('subsystem_offset', 'i8'),
                    ('version', 'u2'),
                    ('endian_test', 'S2')],
    'tag_full': [('mdtype', 'u4'), ('byte_count', 'u4')],
    'tag_smalldata':[('byte_count_mdtype', 'u4'), ('data', 'S4')],
    'array_flags': [('data_type', 'u4'),
                    ('byte_count', 'u4'),
                    ('flags_class','u4'),
                    ('nzmax', 'u4')],
    'U1': 'U1',
    }

mclass_dtypes_template = {
    mxINT8_CLASS: 'i1',
    mxUINT8_CLASS: 'u1',
    mxINT16_CLASS: 'i2',
    mxUINT16_CLASS: 'u2',
    mxINT32_CLASS: 'i4',
    mxUINT32_CLASS: 'u4',
    mxINT64_CLASS: 'i8',
    mxUINT64_CLASS: 'u8',
    mxSINGLE_CLASS: 'f4',
    mxDOUBLE_CLASS: 'f8',
    }


np_to_mtypes = {
    'f8': miDOUBLE,
    'c32': miDOUBLE,
    'c24': miDOUBLE,
    'c16': miDOUBLE,
    'f4': miSINGLE,
    'c8': miSINGLE,
    'i1': miINT8,
    'i2': miINT16,
    'i4': miINT32,
    'i8': miINT64,
    'u1': miUINT8,
    'u2': miUINT16,
    'u4': miUINT32,
    'u8': miUINT64,
    'S1': miUINT8,
    'U1': miUTF16,
    }


np_to_mxtypes = {
    'f8': mxDOUBLE_CLASS,
    'c32': mxDOUBLE_CLASS,
    'c24': mxDOUBLE_CLASS,
    'c16': mxDOUBLE_CLASS,
    'f4': mxSINGLE_CLASS,
    'c8': mxSINGLE_CLASS,
    'i8': mxINT64_CLASS,
    'i4': mxINT32_CLASS,
    'i2': mxINT16_CLASS,
    'u8': mxUINT64_CLASS,
    'u2': mxUINT16_CLASS,
    'u1': mxUINT8_CLASS,
    'S1': mxUINT8_CLASS,
    }



''' Before release v7.1 (release 14) matlab (TM) used the system
default character encoding scheme padded out to 16-bits. Release 14
and later use Unicode. When saving character data, R14 checks if it
can be encoded in 7-bit ascii, and saves in that format if so.'''

codecs_template = {
    miUTF8: {'codec': 'utf_8', 'width': 1},
    miUTF16: {'codec': 'utf_16', 'width': 2},
    miUTF32: {'codec': 'utf_32','width': 4},
    }


def convert_codecs(template, byte_order):
    ''' Convert codec template mapping to byte order

    Set codecs not on this system to None

    Parameters
    ----------
    template : mapping
       key, value are respectively codec name, and root name for codec
       (without byte order suffix)
    byte_order : {'<', '>'}
       code for little or big endian

    Returns
    -------
    codecs : dict
       key, value are name, codec (as in .encode(codec))
    '''
    codecs = {}
    postfix = byte_order == '<' and '_le' or '_be'
    for k, v in template.items():
        codec = v['codec']
        try:
            " ".encode(codec)
        except LookupError:
            codecs[k] = None
            continue
        if v['width'] > 1:
            codec += postfix
        codecs[k] = codec
    return codecs.copy()


class MatFile5Reader(MatFileReader):
    ''' Reader for Mat 5 mat files
    Adds the following attribute to base class
    
    uint16_codec - char codec to use for uint16 char arrays
        (defaults to system default codec)

    Uses variable reader that has the following stardard interface (see
    abstract class in ``miobase``::
    
       __init__(self, file_reader)
       read_header(self)
       array_from_header(self)

    and added interface::

       set_stream(self, stream)
       read_full_tag(self)
       
    '''
    @docfiller
    def __init__(self,
                 mat_stream,
                 byte_order=None,
                 mat_dtype=False,
                 squeeze_me=False,
                 chars_as_strings=True,
                 matlab_compatible=False,
                 struct_as_record=None, # default False, for now
                 uint16_codec=None
                 ):
        '''Initializer for matlab 5 file format reader

    %(matstream_arg)s
    %(load_args)s
    %(struct_arg)s
    uint16_codec : {None, string}
        Set codec to use for uint16 char arrays (e.g. 'utf-8').
        Use system default codec if None
        '''
        # Deal with deprecations
        if struct_as_record is None:
            warnings.warn("Using struct_as_record default value (False)" +
                          " This will change to True in future versions",
                          FutureWarning, stacklevel=2)
            struct_as_record = False
        super(MatFile5Reader, self).__init__(
            mat_stream,
            byte_order,
            mat_dtype,
            squeeze_me,
            chars_as_strings,
            matlab_compatible,
            struct_as_record
            )
        # Set uint16 codec
        if not uint16_codec:
            uint16_codec = sys.getdefaultencoding()
        self.uint16_codec = uint16_codec
        # placeholders for dtypes, codecs - see initialize_read
        self.dtypes = None
        self.class_dtypes = None
        self.codecs = None
        # placeholders for readers - see initialize_read method
        self._file_reader = None
        self._matrix_reader = None

    def guess_byte_order(self):
        ''' Guess byte order.
        Sets stream pointer to 0 '''
        self.mat_stream.seek(126)
        mi = self.mat_stream.read(2)
        self.mat_stream.seek(0)
        return mi == 'IM' and '<' or '>'

    def read_file_header(self):
        ''' Read in mat 5 file header '''
        hdict = {}
        hdr = read_dtype(self.mat_stream, self.dtypes['file_header'])
        hdict['__header__'] = hdr['description'].item().strip(' \t\n\000')
        v_major = hdr['version'] >> 8
        v_minor = hdr['version'] & 0xFF
        hdict['__version__'] = '%d.%d' % (v_major, v_minor)
        return hdict

    def initialize_read(self):
        ''' Run when beginning read of variables

        Sets up readers from parametersself import 
        '''
        self.dtypes = convert_dtypes(mdtypes_template, self.byte_order)
        self.class_dtypes = convert_dtypes(mclass_dtypes_template,
                                           self.byte_order)
        self.codecs = convert_codecs(codecs_template, self.byte_order)
        uint16_codec = self.uint16_codec
        # Set length of miUINT16 char encoding
        self.codecs['uint16_len'] = len("  ".encode(uint16_codec)) \
                               - len(" ".encode(uint16_codec))
        self.codecs['uint16_codec'] = uint16_codec
        # reader for top level stream.  We need this extra top-level
        # reader because we use the matrix_reader object to contain
        # compressed matrices (so they have their own stream)
        self._file_reader = VarReader5(self)
        # reader for matrix streams 
        self._matrix_reader = VarReader5(self)

    def read_var_header(self):
        ''' Read header, return header, next position

        Header has to define at least .name and .is_global

        Parameters
        ----------
        None

        Returns
        -------
        header : object
           object that can be passed to self.read_var_array, and that
           has attributes .name and .is_global
        next_position : int
           position in stream of next variable
        '''
        mdtype, byte_count = self._file_reader.read_full_tag()
        assert byte_count > 0
        next_pos = self.mat_stream.tell() + byte_count
        if mdtype == miCOMPRESSED:
            # make new stream from compressed data
            data = self.mat_stream.read(byte_count)
            # Some matlab files contain zlib streams without valid
            # Z_STREAM_END termination.  To get round this, we use the
            # decompressobj object, that allows you to decode an
            # incomplete stream.  See discussion at
            # http://bugs.python.org/issue8672
            dcor = zlib.decompressobj()
            stream = StringIO(dcor.decompress(data))
            # Check the stream is not so broken as to leave cruft behind
            assert dcor.flush() == ''
            del data
            self._matrix_reader.set_stream(stream)
            mdtype, byte_count = self._matrix_reader.read_full_tag()
        else:
            self._matrix_reader.set_stream(self.mat_stream)
        if not mdtype == miMATRIX:
            raise TypeError, \
                'Expecting miMATRIX type here, got %d' %  mdtype
        header = self._matrix_reader.read_header()
        return header, next_pos
            
    def read_var_array(self, header, process=True):
        ''' Read array, given `header`

        Parameters
        ----------
        header : header object
           object with fields defining variable header
        process : {True, False} bool, optional
           If True, apply recursive post-processing during loading of
           array. 
        
        Returns
        -------
        arr : array
           array with post-processing applied or not according to
           `process`. 
        '''
        return self._matrix_reader.array_from_header(header, process)

    def get_variables(self, variable_names=None):
        ''' get variables from streamasdictionary import 

        variable_names   - optional list of variable names to get

        If variable_names is None, then get all variables in file
        '''
        if isinstance(variable_names, basestring):
            variable_names = [variable_names]
        self.mat_stream.seek(0)
        # Here we pass all the parameters in self to the reading objects
        self.initialize_read()
        mdict = self.read_file_header()
        mdict['__globals__'] = []
        while not self.end_of_stream():
            hdr, next_position = self.read_var_header()
            name = hdr.name
            if name == '':
                # can only be a matlab 7 function workspace
                name = '__function_workspace__'
                # We want to keep this raw because mat_dtype processing
                # will break the format (uint8 as mxDOUBLE_CLASS)
                process = False
            else:
                process = True
            if variable_names and name not in variable_names:
                self.mat_stream.seek(next_position)
                continue
            try:
                res = self.read_var_array(hdr, process)
            except MatReadError, err:
                warnings.warn(
                    'Unreadable variable "%s", because "%s"' % \
                    (name, err),
                    Warning, stacklevel=2)
                res = "Read error: %s" % err
            self.mat_stream.seek(next_position)
            mdict[name] = res
            if hdr.is_global:
                mdict['__globals__'].append(name)
            if variable_names:
                variable_names.remove(name)
                if len(variable_names) == 0:
                    break
        return mdict

    
def to_writeable(source):
    ''' Convert input object ``source`` to something we can write

    Parameters
    ----------
    source : object

    Returns
    -------
    arr : ndarray

    Examples
    --------
    >>> to_writeable(np.array([1])) # pass through ndarrays
    array([1])
    >>> expected = np.array([(1, 2)], dtype=[('a', '|O8'), ('b', '|O8')])
    >>> np.all(to_writeable({'a':1,'b':2}) == expected)
    True
    >>> np.all(to_writeable({'a':1,'b':2, '_c':3}) == expected)
    True
    >>> np.all(to_writeable({'a':1,'b':2, 100:3}) == expected)
    True
    >>> np.all(to_writeable({'a':1,'b':2, '99':3}) == expected)
    True
    >>> class klass(object): pass
    >>> c = klass
    >>> c.a = 1
    >>> c.b = 2
    >>> np.all(to_writeable({'a':1,'b':2}) == expected)
    True
    >>> to_writeable([])
    array([], dtype=float64)
    >>> to_writeable(())
    array([], dtype=float64)
    >>> to_writeable(None)

    >>> to_writeable('a string').dtype
    dtype('|S8')
    >>> to_writeable(1)
    array(1)
    >>> to_writeable([1])
    array([1])
    >>> to_writeable([1])
    array([1])
    >>> to_writeable(object()) # not convertable

    dict keys with legal characters are convertible

    >>> to_writeable({'a':1})['a']
    array([1], dtype=object)

    but not with illegal characters

    >>> to_writeable({'1':1}) is None
    True
    >>> to_writeable({'_a':1}) is None
    True
    '''
    if isinstance(source, np.ndarray):
        return source
    if source is None:
        return None
    # Objects that have dicts
    if hasattr(source, '__dict__'):
        source = dict((key, value) for key, value in source.__dict__.items()
                      if not key.startswith('_'))
    # Mappings or object dicts
    if hasattr(source, 'keys'):
        dtype = []
        values = []
        for field, value in source.items():
            if (isinstance(field, basestring) and 
                not field[0] in '_0123456789'):
                dtype.append((field,object))
                values.append(value)
        if dtype:
            return np.array( [tuple(values)] ,dtype)
        else:
            return None
    # Next try and convert to an array
    narr = np.asanyarray(source)
    if narr.dtype.type in (np.object, np.object_) and \
       narr.shape == () and narr == source:
        # No interesting conversion possible
        return None
    return narr


class VarWriter5(object):
    ''' Generic matlab matrix writing class '''
    mat_tag = np.zeros((), mdtypes_template['tag_full'])
    mat_tag['mdtype'] = miMATRIX

    def __init__(self, file_writer):
        self.file_stream = file_writer.file_stream
        self.unicode_strings=file_writer.unicode_strings
        self.long_field_names=file_writer.long_field_names
        self.oned_as = file_writer.oned_as
        # These are used for top level writes, and unset after
        self._var_name = None
        self._var_is_global = False

    def write_bytes(self, arr):
        self.file_stream.write(arr.tostring(order='F'))

    def write_string(self, s):
        self.file_stream.write(s)

    def write_element(self, arr, mdtype=None):
        ''' write tag and data '''
        if mdtype is None:
            mdtype = np_to_mtypes[arr.dtype.str[1:]]
        byte_count = arr.size*arr.itemsize
        if byte_count <= 4:
            self.write_smalldata_element(arr, mdtype, byte_count)
        else:
            self.write_regular_element(arr, mdtype, byte_count)

    def write_smalldata_element(self, arr, mdtype, byte_count):
        # write tag with embedded data
        tag = np.zeros((), mdtypes_template['tag_smalldata'])
        tag['byte_count_mdtype'] = (byte_count << 16) + mdtype
        # if arr.tostring is < 4, the element will be zero-padded as needed.
        tag['data'] = arr.tostring(order='F')
        self.write_bytes(tag)

    def write_regular_element(self, arr, mdtype, byte_count):
        # write tag, data
        tag = np.zeros((), mdtypes_template['tag_full'])
        tag['mdtype'] = mdtype
        tag['byte_count'] = byte_count
        self.write_bytes(tag)
        self.write_bytes(arr)
        # pad to next 64-bit boundary
        bc_mod_8 = byte_count % 8
        if bc_mod_8:
            self.file_stream.write('\x00' * (8-bc_mod_8))

    def write_header(self,
                     shape, 
                     mclass,
                     is_complex=False,
                     is_logical=False,
                     nzmax=0):
        ''' Write header for given data options
        shape : sequence
           array shape
        mclass      - mat5 matrix class
        is_complex  - True if matrix is complex
        is_logical  - True if matrix is logical
        nzmax        - max non zero elements for sparse arrays

        We get the name and the global flag from theobjectreset import 
        them to defaults after we've used them
        '''
        # get name and is_global from one-shot object store
        name = self._var_name
        is_global = self._var_is_global
        # initialize the top-level matrix tag, store position
        self._mat_tag_pos = self.file_stream.tell()
        self.write_bytes(self.mat_tag)
        # write array flags (complex, global, logical, class, nzmax)
        af = np.zeros((), mdtypes_template['array_flags'])
        af['data_type'] = miUINT32
        af['byte_count'] = 8
        flags = is_complex << 3 | is_global << 2 | is_logical << 1
        af['flags_class'] = mclass | flags << 8
        af['nzmax'] = nzmax
        self.write_bytes(af)
        # shape
        self.write_element(np.array(shape, dtype='i4'))
        # write name
        name = np.asarray(name)
        if name == '': # empty string zero-terminated
            self.write_smalldata_element(name, miINT8, 0)
        else:
            self.write_element(name, miINT8)
        # reset the one-shot store to defaults
        self._var_name = ''
        self._var_is_global = False
        
    def update_matrix_tag(self, start_pos):
        curr_pos = self.file_stream.tell()
        self.file_stream.seek(start_pos)
        self.mat_tag['byte_count'] = curr_pos - start_pos - 8
        self.write_bytes(self.mat_tag)
        self.file_stream.seek(curr_pos)

    def write_top(self, arr, name, is_global):
        """ Write variable at top level of mat file
        
        Parameters
        ----------
        arr : array-like
            array-like object to create writer for
        name : str, optional
            name as it will appear in matlab workspace
            default is empty string
        is_global : {False, True} optional
            whether variable will be global on load into matlab
        """
        # these are set before the top-level header write, and unset at
        # the end of the same write, because they do not apply for lower levels
        self._var_is_global = is_global
        self._var_name = name
        # write the header and data
        self.write(arr)
        
    def write(self, arr):
        ''' Write `arr` to stream at top and sub levels

        Parameters
        ----------
        arr : array-like
            array-like object to create writer for
        '''
        # store position, so we can update the matrix tag
        mat_tag_pos = self.file_stream.tell()
        # First check if these are sparse
        if scipy.sparse.issparse(arr):
            self.write_sparse(arr)
            self.update_matrix_tag(mat_tag_pos)
            return
        # Try to convert things that aren't arrays
        narr = to_writeable(arr)
        if narr is None:
            raise TypeError('Could not convert %s (type %s) to array'
                            % (arr, type(arr)))
        if isinstance(narr, MatlabObject):
            self.write_object(narr)
        elif isinstance(narr, MatlabFunction):
            raise MatWriteError('Cannot write matlab functions')
        elif narr.dtype.fields: # struct array
            self.write_struct(narr)
        elif narr.dtype.hasobject: # cell array
            self.write_cells(narr)
        elif narr.dtype.kind in ('U', 'S'):
            if self.unicode_strings:
                codec='UTF8'
            else:
                codec = 'ascii'
            self.write_char(narr, codec)
        else:
            self.write_numeric(narr)
        self.update_matrix_tag(mat_tag_pos)

    def write_numeric(self, arr):
        imagf = arr.dtype.kind == 'c'
        try:
            mclass = np_to_mxtypes[arr.dtype.str[1:]]
        except KeyError:
            if imagf:
                arr = arr.astype('c128')
            else:
                arr = arr.astype('f8')
            mclass = mxDOUBLE_CLASS
        self.write_header(matdims(arr, self.oned_as),
                          mclass,
                          is_complex=imagf)
        if imagf:
            self.write_element(arr.real)
            self.write_element(arr.imag)
        else:
            self.write_element(arr)

    def write_char(self, arr, codec='ascii'):
        ''' Write string array `arr` with given `codec`
        '''
        if arr.size == 0 or np.all(arr == ''):
            # This an empty string array or a string array containing
            # only empty strings.  Matlab cannot distiguish between a
            # string array that is empty, and a string array containing
            # only empty strings, because it stores strings as arrays of
            # char.  There is no way of having an array of char that is
            # not empty, but contains an empty string. We have to
            # special-case the array-with-empty-strings because even
            # empty strings have zero padding, which would otherwise
            # appear in matlab as a string with a space.
            shape = (0,) * np.max([arr.ndim, 2])
            self.write_header(shape, mxCHAR_CLASS)
            self.write_smalldata_element(arr, miUTF8, 0)
            return
        # non-empty string.
        #
        # Convert to char array
        arr = arr_to_chars(arr)
        # We have to write the shape directly, because we are going
        # recode the characters, and the resulting stream of chars
        # may have a different length
        shape = arr.shape
        self.write_header(shape, mxCHAR_CLASS)
        if arr.dtype.kind == 'U' and arr.size:
            # Make one long string from all the characters.  We need to
            # transpose here, because we're flattening the array, before
            # we write the bytes.  The bytes have to be written in
            # Fortran order.
            n_chars = np.product(shape)
            st_arr = np.ndarray(shape=(),
                                dtype=arr_dtype_number(arr, n_chars),
                                buffer=arr.T.copy()) # Fortran order
            # Recode with codec to give byte string
            st = st_arr.item().encode(codec)
            # Reconstruct as one-dimensional byte array
            arr = np.ndarray(shape=(len(st),),
                             dtype='S1',
                             buffer=st)
        self.write_element(arr, mdtype=miUTF8)

    def write_sparse(self, arr):
        ''' Sparse matrices are 2D
        '''
        A = arr.tocsc() # convert to sparse CSC format
        A.sort_indices()     # MATLAB expects sorted row indices
        is_complex = (A.dtype.kind == 'c')
        nz = A.nnz
        self.write_header(matdims(arr, self.oned_as),
                          mxSPARSE_CLASS,
                          is_complex=is_complex,
                          nzmax=nz)
        self.write_element(A.indices.astype('i4'))
        self.write_element(A.indptr.astype('i4'))
        self.write_element(A.data.real)
        if is_complex:
            self.write_element(A.data.imag)

    def write_cells(self, arr):
        self.write_header(matdims(arr, self.oned_as),
                          mxCELL_CLASS)
        # loop over data, column major
        A = np.atleast_2d(arr).flatten('F')
        for el in A:
            self.write(el)

    def write_struct(self, arr):
        self.write_header(matdims(arr, self.oned_as),
                          mxSTRUCT_CLASS)
        self._write_items(arr)

    def _write_items(self, arr):
        # write fieldnames
        fieldnames = [f[0] for f in arr.dtype.descr]
        length = max([len(fieldname) for fieldname in fieldnames])+1
        max_length = (self.long_field_names and 64) or 32
        if length > max_length:
            raise ValueError(
                "Field names are restricted to %d characters"
                 % (max_length-1))
        self.write_element(np.array([length], dtype='i4'))
        self.write_element(
            np.array(fieldnames, dtype='S%d'%(length)),
            mdtype=miINT8)
        A = np.atleast_2d(arr).flatten('F')
        for el in A:
            for f in fieldnames:
                self.write(el[f])

    def write_object(self, arr):
        '''Same as writing structs, except different mx class, and extra
        classname element after header
        '''
        self.write_header(matdims(arr, self.oned_as),
                          mxOBJECT_CLASS)
        self.write_element(np.array(arr.classname, dtype='S'),
                           mdtype=miINT8)
        self._write_items(arr)


class MatFile5Writer(object):
    ''' Class for writing mat5 files '''
    @docfiller
    def __init__(self, file_stream,
                 do_compression=False,
                 unicode_strings=False,
                 global_vars=None,
                 long_field_names=False,
                 oned_as=None):
        ''' Initialize writer for matlab 5 format files 

        Parameters
        ----------
        %(do_compression)s
        %(unicode_strings)s
        global_vars : None or sequence of strings, optional
            Names of variables to be marked as global for matlab
        %(long_fields)s
        %(oned_as)s
        '''
        self.file_stream = file_stream
        self.do_compression = do_compression
        self.unicode_strings = unicode_strings
        if global_vars:
            self.global_vars = global_vars
        else:
            self.global_vars = []
        self.long_field_names = long_field_names
        # deal with deprecations
        if oned_as is None:
            warnings.warn("Using oned_as default value ('column')" +
                          " This will change to 'row' in future versions",
                          FutureWarning, stacklevel=2)
            oned_as = 'column'
        self.oned_as = oned_as
        self._matrix_writer = None

    def write_file_header(self):
        # write header
        hdr =  np.zeros((), mdtypes_template['file_header'])
        hdr['description']='MATLAB 5.0 MAT-file Platform: %s, Created on: %s' \
            % (os.name,time.asctime())
        hdr['version']= 0x0100
        hdr['endian_test']=np.ndarray(shape=(),
                                      dtype='S2',
                                      buffer=np.uint16(0x4d49))
        self.file_stream.write(hdr.tostring())

    def put_variables(self, mdict, write_header=None):
        ''' Write variables in `mdict` to stream

        Parameters
        ----------
        mdict : mapping
           mapping with method ``items`` return name, contents pairs
           where ``name`` which will appeak in the matlab workspace in
           file load, and ``contents`` is something writeable to a
           matlab file, such as a numpy array.
        write_header : {None, True, False}
           If True, then write the matlab file header before writing the
           variables.  If None (the default) then write the file header
           if we are at position 0 in the stream.  By setting False
           here, and setting the stream position to the end of the file,
           you can append variables to a matlab file
        '''
        # write header if requested, or None and start of file
        if write_header is None:
            write_header = self.file_stream.tell() == 0
        if write_header:
            self.write_file_header()
        self._matrix_writer = VarWriter5(self)
        for name, var in mdict.items():
            if name[0] == '_':
                continue
            is_global = name in self.global_vars
            if self.do_compression:
                stream = StringIO()
                self._matrix_writer.file_stream = stream
                self._matrix_writer.write_top(var, name, is_global)
                out_str = zlib.compress(stream.getvalue())
                tag = np.empty((), mdtypes_template['tag_full'])
                tag['mdtype'] = miCOMPRESSED
                tag['byte_count'] = len(out_str)
                self.file_stream.write(tag.tostring() + out_str)
            else: # not compressing
                self._matrix_writer.write_top(var, name, is_global)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.