_internal.py :  » Math » Numerical-Python » numpy » numpy » core » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » Numerical Python 
Numerical Python » numpy » numpy » core » _internal.py
#A place for code to be called from C-code
#  that implements more complicated stuff.

import re
import sys

from numpy.compat import asbytes,bytes

if (sys.byteorder == 'little'):
    _nbo = asbytes('<')
else:
    _nbo = asbytes('>')

def _makenames_list(adict):
    from multiarray import dtype
    allfields = []
    fnames = adict.keys()
    for fname in fnames:
        obj = adict[fname]
        n = len(obj)
        if not isinstance(obj, tuple) or n not in [2,3]:
            raise ValueError("entry not a 2- or 3- tuple")
        if (n > 2) and (obj[2] == fname):
            continue
        num = int(obj[1])
        if (num < 0):
            raise ValueError("invalid offset.")
        format = dtype(obj[0])
        if (format.itemsize == 0):
            raise ValueError("all itemsizes must be fixed.")
        if (n > 2):
            title = obj[2]
        else:
            title = None
        allfields.append((fname, format, num, title))
    # sort by offsets
    allfields.sort(key=lambda x: x[2])
    names = [x[0] for x in allfields]
    formats = [x[1] for x in allfields]
    offsets = [x[2] for x in allfields]
    titles = [x[3] for x in allfields]

    return names, formats, offsets, titles

# Called in PyArray_DescrConverter function when
#  a dictionary without "names" and "formats"
#  fields is used as a data-type descriptor.
def _usefields(adict, align):
    from multiarray import dtype
    try:
        names = adict[-1]
    except KeyError:
        names = None
    if names is None:
        names, formats, offsets, titles = _makenames_list(adict)
    else:
        formats = []
        offsets = []
        titles = []
        for name in names:
            res = adict[name]
            formats.append(res[0])
            offsets.append(res[1])
            if (len(res) > 2):
                titles.append(res[2])
            else:
                titles.append(None)

    return dtype({"names" : names,
                  "formats" : formats,
                  "offsets" : offsets,
                  "titles" : titles}, align)


# construct an array_protocol descriptor list
#  from the fields attribute of a descriptor
# This calls itself recursively but should eventually hit
#  a descriptor that has no fields and then return
#  a simple typestring

def _array_descr(descriptor):
    from multiarray import METADATA_DTSTR
    fields = descriptor.fields
    if fields is None:
        subdtype = descriptor.subdtype
        if subdtype is None:
            if descriptor.metadata is None:
                return descriptor.str
            else:
                new = descriptor.metadata.copy()
                # Eliminate any key related to internal implementation
                _ = new.pop(METADATA_DTSTR, None)
                return (descriptor.str, new)
        else:
            return (_array_descr(subdtype[0]), subdtype[1])


    names = descriptor.names
    ordered_fields = [fields[x] + (x,) for x in names]
    result = []
    offset = 0
    for field in ordered_fields:
        if field[1] > offset:
            num = field[1] - offset
            result.append(('','|V%d' % num))
            offset += num
        if len(field) > 3:
            name = (field[2],field[3])
        else:
            name = field[2]
        if field[0].subdtype:
            tup = (name, _array_descr(field[0].subdtype[0]),
                   field[0].subdtype[1])
        else:
            tup = (name, _array_descr(field[0]))
        offset += field[0].itemsize
        result.append(tup)

    return result

# Build a new array from the information in a pickle.
# Note that the name numpy.core._internal._reconstruct is embedded in
# pickles of ndarrays made with NumPy before release 1.0
# so don't remove the name here, or you'll
# break backward compatibilty.
def _reconstruct(subtype, shape, dtype):
    from multiarray import ndarray
    return ndarray.__new__(subtype, shape, dtype)


# format_re and _split were taken from numarray by J. Todd Miller

def _split(input):
    """Split the input formats string into field formats without splitting
       the tuple used to specify multi-dimensional arrays."""

    newlist = []
    hold = asbytes('')

    listinput = input.split(asbytes(','))
    for element in listinput:
        if hold != asbytes(''):
            item = hold + asbytes(',') + element
        else:
            item = element
        left = item.count(asbytes('('))
        right = item.count(asbytes(')'))

        # if the parenthesis is not balanced, hold the string
        if left > right :
            hold = item

        # when balanced, append to the output list and reset the hold
        elif left == right:
            newlist.append(item.strip())
            hold = asbytes('')

        # too many close parenthesis is unacceptable
        else:
            raise SyntaxError(item)

    # if there is string left over in hold
    if hold != asbytes(''):
        raise SyntaxError(hold)

    return newlist

format_datetime = re.compile(asbytes(r"""
     (?P<typecode>M8|m8|datetime64|timedelta64)
     ([[]
       ((?P<num>\d+)?
       (?P<baseunit>Y|M|W|B|D|h|m|s|ms|us|ns|ps|fs|as)
       (/(?P<den>\d+))?
      []])
     (//(?P<events>\d+))?)?"""), re.X)

# Return (baseunit, num, den, events), datetime
#  from date-time string
def _datetimestring(astr):
    res = format_datetime.match(astr)
    if res is None:
        raise ValueError("Incorrect date-time string.")
    typecode = res.group('typecode')
    datetime = (typecode == asbytes('M8') or typecode == asbytes('datetime64'))
    defaults = [asbytes('us'), 1, 1, 1]
    names = ['baseunit', 'num', 'den', 'events']
    func = [bytes, int, int, int]
    dt_tuple = []
    for i, name in enumerate(names):
        value = res.group(name)
        if value:
            dt_tuple.append(func[i](value))
        else:
            dt_tuple.append(defaults[i])

    return tuple(dt_tuple), datetime

format_re = re.compile(asbytes(r'(?P<order1>[<>|=]?)(?P<repeats> *[(]?[ ,0-9]*[)]? *)(?P<order2>[<>|=]?)(?P<dtype>[A-Za-z0-9.]*)'))

# astr is a string (perhaps comma separated)

_convorder = {asbytes('='): _nbo}

def _commastring(astr):
    res = _split(astr)
    if (len(res)) < 1:
        raise ValueError("unrecognized formant")
    result = []
    for k,item in enumerate(res):
        # convert item
        try:
            (order1, repeats, order2, dtype) = format_re.match(item).groups()
        except (TypeError, AttributeError):
            raise ValueError('format %s is not recognized' % item)

        if order2 == asbytes(''):
            order = order1
        elif order1 == asbytes(''):
            order = order2
        else:
            order1 = _convorder.get(order1, order1)
            order2 = _convorder.get(order2, order2)
            if (order1 != order2):
                raise ValueError('in-consistent byte-order specification %s and %s' % (order1, order2))
            order = order1

        if order in [asbytes('|'), asbytes('='), _nbo]:
            order = asbytes('')
        dtype = order + dtype
        if (repeats == asbytes('')):
            newitem = dtype
        else:
            newitem = (dtype, eval(repeats))
        result.append(newitem)

    return result

def _getintp_ctype():
    from multiarray import dtype
    val = _getintp_ctype.cache
    if val is not None:
        return val
    char = dtype('p').char
    import ctypes
    if (char == 'i'):
        val = ctypes.c_int
    elif char == 'l':
        val = ctypes.c_long
    elif char == 'q':
        val = ctypes.c_longlong
    else:
        val = ctypes.c_long
    _getintp_ctype.cache = val
    return val
_getintp_ctype.cache = None

# Used for .ctypes attribute of ndarray

class _missing_ctypes(object):
    def cast(self, num, obj):
        return num

    def c_void_p(self, num):
        return num

class _ctypes(object):
    def __init__(self, array, ptr=None):
        try:
            import ctypes
            self._ctypes = ctypes
        except ImportError:
            self._ctypes = _missing_ctypes()
        self._arr = array
        self._data = ptr
        if self._arr.ndim == 0:
            self._zerod = True
        else:
            self._zerod = False

    def data_as(self, obj):
        return self._ctypes.cast(self._data, obj)

    def shape_as(self, obj):
        if self._zerod:
            return None
        return (obj*self._arr.ndim)(*self._arr.shape)

    def strides_as(self, obj):
        if self._zerod:
            return None
        return (obj*self._arr.ndim)(*self._arr.strides)

    def get_data(self):
        return self._data

    def get_shape(self):
        if self._zerod:
            return None
        return (_getintp_ctype()*self._arr.ndim)(*self._arr.shape)

    def get_strides(self):
        if self._zerod:
            return None
        return (_getintp_ctype()*self._arr.ndim)(*self._arr.strides)

    def get_as_parameter(self):
        return self._ctypes.c_void_p(self._data)

    data = property(get_data, None, doc="c-types data")
    shape = property(get_shape, None, doc="c-types shape")
    strides = property(get_strides, None, doc="c-types strides")
    _as_parameter_ = property(get_as_parameter, None, doc="_as parameter_")


# Given a datatype and an order object
#  return a new names tuple
#  with the order indicated
def _newnames(datatype, order):
    oldnames = datatype.names
    nameslist = list(oldnames)
    if isinstance(order, str):
        order = [order]
    if isinstance(order, (list, tuple)):
        for name in order:
            try:
                nameslist.remove(name)
            except ValueError:
                raise ValueError("unknown field name: %s" % (name,))
        return tuple(list(order) + nameslist)
    raise ValueError("unsupported order value: %s" % (order,))

# Given an array with fields and a sequence of field names
# construct a new array with just those fields copied over
def _index_fields(ary, fields):
    from multiarray import empty,dtype
    dt = ary.dtype
    new_dtype = [(name, dt[name]) for name in dt.names if name in fields]
    if ary.flags.f_contiguous:
        order = 'F'
    else:
        order = 'C'

    newarray = empty(ary.shape, dtype=new_dtype, order=order) 
   
    for name in fields:
        newarray[name] = ary[name]

    return newarray
    
# Given a string containing a PEP 3118 format specifier,
# construct a Numpy dtype

_pep3118_native_map = {
    '?': '?',
    'b': 'b',
    'B': 'B',
    'h': 'h',
    'H': 'H',
    'i': 'i',
    'I': 'I',
    'l': 'l',
    'L': 'L',
    'q': 'q',
    'Q': 'Q',
    'f': 'f',
    'd': 'd',
    'g': 'g',
    'Zf': 'F',
    'Zd': 'D',
    'Zg': 'G',
    's': 'S',
    'w': 'U',
    'O': 'O',
    'x': 'V', # padding
}
_pep3118_native_typechars = ''.join(_pep3118_native_map.keys())

_pep3118_standard_map = {
    '?': '?',
    'b': 'b',
    'B': 'B',
    'h': 'i2',
    'H': 'u2',
    'i': 'i4',
    'I': 'u4',
    'l': 'i4',
    'L': 'u4',
    'q': 'i8',
    'Q': 'u8',
    'f': 'f',
    'd': 'd',
    'Zf': 'F',
    'Zd': 'D',
    's': 'S',
    'w': 'U',
    'O': 'O',
    'x': 'V', # padding
}
_pep3118_standard_typechars = ''.join(_pep3118_standard_map.keys())

def _dtype_from_pep3118(spec, byteorder='@', is_subdtype=False):
    from numpy.core.multiarray import dtype

    fields = {}
    offset = 0
    explicit_name = False
    this_explicit_name = False
    common_alignment = 1
    is_padding = False
    last_offset = 0

    dummy_name_index = [0]
    def next_dummy_name():
        dummy_name_index[0] += 1
    def get_dummy_name():
        while True:
            name = 'f%d' % dummy_name_index[0]
            if name not in fields:
                return name
            next_dummy_name()

    # Parse spec
    while spec:
        value = None

        # End of structure, bail out to upper level
        if spec[0] == '}':
            spec = spec[1:]
            break

        # Sub-arrays (1)
        shape = None
        if spec[0] == '(':
            j = spec.index(')')
            shape = tuple(map(int, spec[1:j].split(',')))
            spec = spec[j+1:]

        # Byte order
        if spec[0] in ('@', '=', '<', '>', '^', '!'):
            byteorder = spec[0]
            if byteorder == '!':
                byteorder = '>'
            spec = spec[1:]

        # Byte order characters also control native vs. standard type sizes
        if byteorder in ('@', '^'):
            type_map = _pep3118_native_map
            type_map_chars = _pep3118_native_typechars
        else:
            type_map = _pep3118_standard_map
            type_map_chars = _pep3118_standard_typechars

        # Item sizes
        itemsize = 1
        if spec[0].isdigit():
            j = 1
            for j in xrange(1, len(spec)):
                if not spec[j].isdigit():
                    break
            itemsize = int(spec[:j])
            spec = spec[j:]

        # Data types
        is_padding = False

        if spec[:2] == 'T{':
            value, spec, align, next_byteorder = _dtype_from_pep3118(
                spec[2:], byteorder=byteorder, is_subdtype=True)
        elif spec[0] in type_map_chars:
            next_byteorder = byteorder
            if spec[0] == 'Z':
                j = 2
            else:
                j = 1
            typechar = spec[:j]
            spec = spec[j:]
            is_padding = (typechar == 'x')
            dtypechar = type_map[typechar]
            if dtypechar in 'USV':
                dtypechar += '%d' % itemsize
                itemsize = 1
            numpy_byteorder = {'@': '=', '^': '='}.get(byteorder, byteorder)
            value = dtype(numpy_byteorder + dtypechar)
            align = value.alignment
        else:
            raise ValueError("Unknown PEP 3118 data type specifier %r" % spec)

        #
        # Native alignment may require padding
        #
        # Here we assume that the presence of a '@' character implicitly implies
        # that the start of the array is *already* aligned.
        #
        extra_offset = 0
        if byteorder == '@':
            start_padding = (-offset) % align
            intra_padding = (-value.itemsize) % align

            offset += start_padding

            if intra_padding != 0:
                if itemsize > 1 or (shape is not None and _prod(shape) > 1):
                    # Inject internal padding to the end of the sub-item
                    value = _add_trailing_padding(value, intra_padding)
                else:
                    # We can postpone the injection of internal padding,
                    # as the item appears at most once
                    extra_offset += intra_padding

            # Update common alignment
            common_alignment = (align*common_alignment
                                / _gcd(align, common_alignment))

        # Convert itemsize to sub-array
        if itemsize != 1:
            value = dtype((value, (itemsize,)))

        # Sub-arrays (2)
        if shape is not None:
            value = dtype((value, shape))

        # Field name
        this_explicit_name = False
        if spec and spec.startswith(':'):
            i = spec[1:].index(':') + 1
            name = spec[1:i]
            spec = spec[i+1:]
            explicit_name = True
            this_explicit_name = True
        else:
            name = get_dummy_name()

        if not is_padding or this_explicit_name:
            if name in fields:
                raise RuntimeError("Duplicate field name '%s' in PEP3118 format"
                                   % name)
            fields[name] = (value, offset)
            last_offset = offset
            if not this_explicit_name:
                next_dummy_name()

        byteorder = next_byteorder

        offset += value.itemsize
        offset += extra_offset

    # Check if this was a simple 1-item type
    if len(fields.keys()) == 1 and not explicit_name and fields['f0'][1] == 0 \
           and not is_subdtype:
        ret = fields['f0'][0]
    else:
        ret = dtype(fields)

    # Trailing padding must be explicitly added
    padding = offset - ret.itemsize
    if byteorder == '@':
        padding += (-offset) % common_alignment
    if is_padding and not this_explicit_name:
        ret = _add_trailing_padding(ret, padding)

    # Finished
    if is_subdtype:
        return ret, spec, common_alignment, byteorder
    else:
        return ret

def _add_trailing_padding(value, padding):
    """Inject the specified number of padding bytes at the end of a dtype"""
    from numpy.core.multiarray import dtype

    if value.fields is None:
        vfields = {'f0': (value, 0)}
    else:
        vfields = dict(value.fields)

    if value.names and value.names[-1] == '' and \
           value[''].char == 'V':
        # A trailing padding field is already present
        vfields[''] = ('V%d' % (vfields[''][0].itemsize + padding),
                       vfields[''][1])
        value = dtype(vfields)
    else:
        # Get a free name for the padding field
        j = 0
        while True:
            name = 'pad%d' % j
            if name not in vfields:
                vfields[name] = ('V%d' % padding, value.itemsize)
                break
            j += 1

        value = dtype(vfields)
        if '' not in vfields:
            # Strip out the name of the padding field
            names = list(value.names)
            names[-1] = ''
            value.names = tuple(names)
    return value

def _prod(a):
    p = 1
    for x in a:
        p *= x
    return p

def _gcd(a, b):
    """Calculate the greatest common divisor of a and b"""
    while b:
        a, b = b, a%b
    return a
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.