gas.py :  » Game-2D-3D » Visual » visual-5.32_release » examples » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Game 2D 3D » Visual 
Visual » visual 5.32_release » examples » gas.py
from visual import *
from visual.graph import *
from random import random

# A model of an ideal gas with hard-sphere collisions
# Program uses numpy arrays for high speed computations

# Bruce Sherwood

win=500

Natoms = 100  # change this to have more or fewer atoms

# Typical values
L = 1. # container is a cube L on a side
gray = (0.7,0.7,0.7) # color of edges of container
Matom = 4E-3/6E23 # helium mass
Ratom = 0.03 # wildly exaggerated size of helium atom
k = 1.4E-23 # Boltzmann constant
T = 300. # around room temperature
dt = 1E-5

scene = display(title="Gas", width=win, height=win, x=0, y=0,
                center=(L/2.,L/2.,L/2.))

deltav = 100. # binning for v histogram
vdist = gdisplay(x=0, y=win, ymax = Natoms*deltav/1000.,
             width=win, height=0.6*win, xtitle='v', ytitle='dN')
theory = gcurve(color=color.cyan)

dv = 10.
for v in arange(0.,3001.+dv,dv): # theoretical prediction
    theory.plot(pos=(v,
        (deltav/dv)*Natoms*4.*pi*((Matom/(2.*pi*k*T))**1.5)
                     *exp((-0.5*Matom*v**2)/(k*T))*v**2*dv))

observation = ghistogram(bins=arange(0.,3000.,deltav),
                        accumulate=1, average=1, color=color.red)

xaxis = curve(pos=[(0,0,0), (L,0,0)], color=gray)
yaxis = curve(pos=[(0,0,0), (0,L,0)], color=gray)
zaxis = curve(pos=[(0,0,0), (0,0,L)], color=gray)
xaxis2 = curve(pos=[(L,L,L), (0,L,L), (0,0,L), (L,0,L)], color=gray)
yaxis2 = curve(pos=[(L,L,L), (L,0,L), (L,0,0), (L,L,0)], color=gray)
zaxis2 = curve(pos=[(L,L,L), (L,L,0), (0,L,0), (0,L,L)], color=gray)

Atoms = []
colors = [color.red, color.green, color.blue,
          color.yellow, color.cyan, color.magenta]
poslist = []
plist = []
mlist = []
rlist = []

for i in range(Natoms):
    Lmin = 1.1*Ratom
    Lmax = L-Lmin
    x = Lmin+(Lmax-Lmin)*random()
    y = Lmin+(Lmax-Lmin)*random()
    z = Lmin+(Lmax-Lmin)*random()
    r = Ratom
    Atoms = Atoms+[sphere(pos=(x,y,z), radius=r, color=colors[i % 6])]
    mass = Matom*r**3/Ratom**3
    pavg = sqrt(2.*mass*1.5*k*T) # average kinetic energy p**2/(2mass) = (3/2)kT
    theta = pi*random()
    phi = 2*pi*random()
    px = pavg*sin(theta)*cos(phi)
    py = pavg*sin(theta)*sin(phi)
    pz = pavg*cos(theta)
    poslist.append((x,y,z))
    plist.append((px,py,pz))
    mlist.append(mass)
    rlist.append(r)

pos = array(poslist)
p = array(plist)
m = array(mlist)
m.shape = (Natoms,1) # Numeric Python: (1 by Natoms) vs. (Natoms by 1)
radius = array(rlist)

pos = pos+(p/m)*(dt/2.) # initial half-step

while True:
    rate(100)
    observation.plot(data=mag(p/m))

    # Update all positions
    pos = pos+(p/m)*dt

    try:  # numpy
        r = pos-pos[:,newaxis] # all pairs of atom-to-atom vectors
        rmag = sqrt(add.reduce(r*r,-1)) # atom-to-atom scalar distances
        hit = less_equal(rmag,radius+radius[:,None])-identity(Natoms)
        hitlist = sort(nonzero(hit.flat)[0]).tolist() # i,j encoded as i*Natoms+j
    except: # old Numeric
        r = pos-pos[:,NewAxis] # all pairs of atom-to-atom vectors
        rmag = sqrt(add.reduce(r*r,-1)) # atom-to-atom scalar distances
        hit = less_equal(rmag,radius+radius[:,NewAxis])-identity(Natoms)
        hitlist = sort(nonzero(hit.flat)).tolist() # i,j encoded as i*Natoms+j

    # If any collisions took place:
    for ij in hitlist:
        i, j = divmod(ij,Natoms) # decode atom pair
        hitlist.remove(j*Natoms+i) # remove symmetric j,i pair from list
        ptot = p[i]+p[j]
        mi = m[i,0]
        mj = m[j,0]
        vi = p[i]/mi
        vj = p[j]/mj
        ri = Atoms[i].radius
        rj = Atoms[j].radius
        a = mag(vj-vi)**2
        if a == 0: continue # exactly same velocities
        b = 2*dot(pos[i]-pos[j],vj-vi)
        c = mag(pos[i]-pos[j])**2-(ri+rj)**2
        d = b**2-4.*a*c
        if d < 0: continue # something wrong; ignore this rare case
        deltat = (-b+sqrt(d))/(2.*a) # t-deltat is when they made contact
        pos[i] = pos[i]-(p[i]/mi)*deltat # back up to contact configuration
        pos[j] = pos[j]-(p[j]/mj)*deltat
        mtot = mi+mj
        pcmi = p[i]-ptot*mi/mtot # transform momenta to cm frame
        pcmj = p[j]-ptot*mj/mtot
        rrel = norm(pos[j]-pos[i])
        pcmi = pcmi-2*dot(pcmi,rrel)*rrel # bounce in cm frame
        pcmj = pcmj-2*dot(pcmj,rrel)*rrel
        p[i] = pcmi+ptot*mi/mtot # transform momenta back to lab frame
        p[j] = pcmj+ptot*mj/mtot
        pos[i] = pos[i]+(p[i]/mi)*deltat # move forward deltat in time
        pos[j] = pos[j]+(p[j]/mj)*deltat
 
    # Bounce off walls
    outside = less_equal(pos,Ratom) # walls closest to origin
    p1 = p*outside
    p = p-p1+abs(p1) # force p component inward
    outside = greater_equal(pos,L-Ratom) # walls farther from origin
    p1 = p*outside
    p = p-p1-abs(p1) # force p component inward

    # Update positions of display objects
    for i in range(Natoms):
        Atoms[i].pos = pos[i]

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.