doublependulum.py :  » Game-2D-3D » Visual » visual-5.32_release » examples » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Game 2D 3D » Visual 
Visual » visual 5.32_release » examples » doublependulum.py
from visual import *

# Double pendulum

# The analysis is in terms of Lagrangian mechanics.
# The Lagrangian variables are angle of upper bar, angle of lower bar,
# measured from the vertical.

# Bruce Sherwood

scene.title = 'Double Pendulum'
scene.height = scene.width = 800

g = 9.8
M1 = 2.0
M2 = 1.0
d = 0.05 # thickness of each bar
gap = 2.*d # distance between two parts of upper, U-shaped assembly
L1 = 0.5 # physical length of upper assembly; distance between axles
L1display = L1+d # show upper assembly a bit longer than physical, to overlap axle
L2 = 1.0 # physical length of lower bar
L2display = L2+d/2. # show lower bar a bit longer than physical, to overlap axle
# Coefficients used in Lagrangian calculation
A = (1./4.)*M1*L1**2+(1./12.)*M1*L1**2+M2*L1**2
B = (1./2.)*M2*L1*L2
C = g*L1*(M1/2.+M2)
D = M2*L1*L2/2.
E = (1./12.)*M2*L2**2+(1./4.)*M2*L2**2
F = g*L2*M2/2.

hpedestal = 1.3*(L1+L2) # height of pedestal
wpedestal = 0.1 # width of pedestal
tbase = 0.05 # thickness of base
wbase = 8.*gap # width of base
offset = 2.*gap # from center of pedestal to center of U-shaped upper assembly
top = vector(0,0,0) # top of inner bar of U-shaped upper assembly
scene.center = top-vector(0,(L1+L2)/2.,0)

theta1 = 1.3*pi/2. # initial upper angle (from vertical)
theta1dot = 0 # initial rate of change of theta1
theta2 = 0 # initial lower angle (from vertical)
theta2dot = 0 # initial rate of change of theta2

pedestal = box(pos=top-vector(0,hpedestal/2.,offset),
                 height=1.1*hpedestal, length=wpedestal, width=wpedestal,
                 color=(0.4,0.4,0.5))
base = box(pos=top-vector(0,hpedestal+tbase/2.,offset),
                 height=tbase, length=wbase, width=wbase,
                 color=pedestal.color)
axle = cylinder(pos=top-vector(0,0,gap/2.-d/4.), axis=(0,0,-offset), radius=d/4., color=color.yellow)

frame1 = frame(pos=top)
bar1 = box(frame=frame1, pos=(L1display/2.-d/2.,0,-(gap+d)/2.), size=(L1display,d,d), color=color.red)
bar1b = box(frame=frame1, pos=(L1display/2.-d/2.,0,(gap+d)/2.), size=(L1display,d,d), color=color.red)
axle1 = cylinder(frame=frame1, pos=(L1,0,-(gap+d)/2.), axis=(0,0,gap+d),
                 radius=axle.radius, color=axle.color)
frame1.axis = (0,-1,0)
frame2 = frame(pos=frame1.axis*L1)
bar2 = box(frame=frame2, pos=(L2display/2.-d/2.,0,0), size=(L2display,d,d), color=color.green)
frame2.axis = (0,-1,0)
frame1.rotate(axis=(0,0,1), angle=theta1)
frame2.rotate(axis=(0,0,1), angle=theta2)

scene.autoscale = 0

dt = 0.001
t = 0.

while True:
    rate(1./dt)
    # Calculate accelerations of the Lagrangian coordinates:
    atheta1 = ((E*C/B)*sin(theta1)-F*sin(theta2))/(D-E*A/B)
    atheta2 = -(A*atheta1+C*sin(theta1))/B
    # Update velocities of the Lagrangian coordinates:
    theta1dot = theta1dot+atheta1*dt
    theta2dot = theta2dot+atheta2*dt
    # Update Lagrangian coordinates:
    dtheta1 = theta1dot*dt
    dtheta2 = theta2dot*dt
    theta1 = theta1+dtheta1
    theta2 = theta2+dtheta2

    frame1.rotate(axis=(0,0,1), angle=dtheta1)
    frame2.pos = top+frame1.axis*L1
    frame2.rotate(axis=(0,0,1), angle=dtheta2)
    t = t+dt

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.