vertex_program.py :  » Game-2D-3D » PyOpenGL » PyOpenGL-3.0.1 » OpenGL » GL » ARB » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Game 2D 3D » PyOpenGL 
PyOpenGL » PyOpenGL 3.0.1 » OpenGL » GL » ARB » vertex_program.py
'''OpenGL extension ARB.vertex_program

This module customises the behaviour of the 
OpenGL.raw.GL.ARB.vertex_program to provide a more 
Python-friendly API

Overview (from thespec import 
  
  Unextended OpenGL mandates a certain set of configurable per-vertex
  computations defining vertex transformation, texture coordinate generation
  and transformation, and lighting.  Several extensions have added further
  per-vertex computations to OpenGL.  For example, extensions have defined
  new texture coordinate generation modes (ARB_texture_cube_map,
  NV_texgen_reflection, NV_texgen_emboss), new vertex transformation modes
  (ARB_vertex_blend, EXT_vertex_weighting), new lighting modes (OpenGL 1.2's
  separate specular and rescale normal functionality), several modes for fog
  distance generation (NV_fog_distance), and eye-distance point size
  attenuation (EXT/ARB_point_parameters).
  
  Each such extension adds a small set of relatively inflexible
  per-vertex computations.
  
  This inflexibility is in contrast to the typical flexibility provided by
  the underlying programmable floating point engines (whether micro-coded
  vertex engines, DSPs, or CPUs) that are traditionally used to implement
  OpenGL's per-vertex computations.  The purpose of this extension is to
  expose to the OpenGL application writer a significant degree of per-vertex
  programmability for computing vertex parameters.
  
  For the purposes of discussing this extension, a vertex program is a
  sequence of floating-point 4-component vector operations that determines
  how a set of program parameters (defined outside of OpenGL's Begin/End
  pair) and an input set of per-vertex parameters are transformed to a set
  of per-vertex result parameters.
  
  The per-vertex computations for standard OpenGL given a particular set of
  lighting and texture coordinate generation modes (along with any state for
  extensions defining per-vertex computations) is, in essence, a vertex
  program.  However, the sequence of operations is defined implicitly by the
  current OpenGL state settings rather than defined explicitly as a sequence
  of instructions.
  
  This extension provides an explicit mechanism for defining vertex program
  instruction sequences for application-defined vertex programs.  In order
  to define such vertex programs, this extension defines a vertex
  programming model including a floating-point 4-component vector
  instruction set and a relatively large set of floating-point 4-component
  registers.
  
  The extension's vertex programming model is designed for efficient
  hardware implementation and to support a wide variety of vertex programs.
  By design, the entire set of existing vertex programs defined by existing
  OpenGL per-vertex computation extensions can be implemented using the
  extension's vertex programming model.

The official definition of this extension is available here:
http://www.opengl.org/registry/specs/ARB/vertex_program.txt
'''
from OpenGL import platform,constants,constant,arrays
from OpenGL import extensions,wrapper
from OpenGL.GL import glget
import ctypes
from OpenGL.raw.GL.ARB.vertex_program import *
### END AUTOGENERATED SECTION
from OpenGL.lazywrapper import lazy

from OpenGL import converters,error,contextdata
from OpenGL.arrays.arraydatatype import ArrayDatatype
# Note: sizes here are == the only documented sizes I could find,
# may need a lookup table some day...
glGetProgramivARB = wrapper.wrapper(glGetProgramivARB).setOutput(
    'params', (1,),
)
glGetProgramEnvParameterdvARB = wrapper.wrapper(glGetProgramEnvParameterdvARB).setOutput(
    'params',(4,),
)
glGetProgramEnvParameterfvARB = wrapper.wrapper(glGetProgramEnvParameterfvARB).setOutput(
    'params',(4,),
)
glGetProgramLocalParameterdvARB = wrapper.wrapper(glGetProgramLocalParameterdvARB).setOutput(
    'params',(4,),
)
glGetProgramLocalParameterfvARB = wrapper.wrapper(glGetProgramLocalParameterfvARB).setOutput(
    'params',(4,),
)
glGetVertexAttribdvARB = wrapper.wrapper(glGetVertexAttribdvARB).setOutput(
    'params',(1,),
)

##glGetVertexAttribPointervARB = wrapper.wrapper(glGetVertexAttribPointervARB).setOutput(
##  'pointer',(1,),
##)
##
##_base_glGetVertexAttribPointervARB
##def glGetVertexAttribPointervARB( index, pname=GL_VERTEX_ATTRIB_ARRAY_POINTER_ARB ):
##  """Retrieve named attribute vector
##  
##  XXX Needs logic checking, I don't think I got the number of
##  levels of indirection correct... i.e. I believe it's just going
##  to rewrite the temporary void_p's value, rather than writing
##  into the numpy array.
##  
##  returns 4-element double array...
##  """
##  output = arrays.GLdoubleArray.zeros( (4,) )
##  pointer = arrays.GLdoubleArray.voidDataPointer( output )
##  _base_glGetVertexAttribPointervARB( index, pname, pointer )
##  return output

@lazy( glVertexAttribPointerARB )
def glVertexAttribPointerARB( 
    baseOperation, index, size, type,
    normalized, stride, pointer,
):
    """Set an attribute pointer for a given shader (index)
    
    index -- the index of the generic vertex to bind, see 
        glGetAttribLocation for retrieval of the value,
        note that index is a global variable, not per-shader
    size -- number of basic elements per record, 1,2,3, or 4
    type -- enum constant for data-type 
    normalized -- whether to perform int to float 
        normalization on integer-type values
    stride -- stride in machine units (bytes) between 
        consecutive records, normally used to create 
        "interleaved" arrays 
    pointer -- data-pointer which provides the data-values,
        normally a vertex-buffer-object or offset into the 
        same.
    
    This implementation stores a copy of the data-pointer 
    in the contextdata structure in order to prevent null-
    reference errors in the renderer.
    """
    array = ArrayDatatype.asArray( pointer )
    key = ('vertex-attrib',index)
    contextdata.setValue( key, array )
    return baseOperation(
        index, size, type,
        normalized, stride, 
        ArrayDatatype.voidDataPointer( array ) 
    )
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.