ImageMath.py :  » GUI » Python-Image-Library » Imaging-1.1.7 » PIL » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » GUI » Python Image Library 
Python Image Library » Imaging 1.1.7 » PIL » ImageMath.py
#
# The Python Imaging Library
# $Id$
#
# a simple math add-on for the Python Imaging Library
#
# History:
# 1999-02-15 fl   Original PIL Plus release
# 2005-05-05 fl   Simplified and cleaned up for PIL 1.1.6
# 2005-09-12 fl   Fixed int() and float() for Python 2.4.1
#
# Copyright (c) 1999-2005 by Secret Labs AB
# Copyright (c) 2005 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#

import Image
import _imagingmath

VERBOSE = 0

def _isconstant(v):
    return isinstance(v, type(0)) or isinstance(v, type(0.0))

class _Operand:
    # wraps an image operand, providing standard operators

    def __init__(self, im):
        self.im = im

    def __fixup(self, im1):
        # convert image to suitable mode
        if isinstance(im1, _Operand):
            # argument was an image.
            if im1.im.mode in ("1", "L"):
                return im1.im.convert("I")
            elif im1.im.mode in ("I", "F"):
                return im1.im
            else:
                raise ValueError, "unsupported mode: %s" % im1.im.mode
        else:
            # argument was a constant
            if _isconstant(im1) and self.im.mode in ("1", "L", "I"):
                return Image.new("I", self.im.size, im1)
            else:
                return Image.new("F", self.im.size, im1)

    def apply(self, op, im1, im2=None, mode=None):
        im1 = self.__fixup(im1)
        if im2 is None:
            # unary operation
            out = Image.new(mode or im1.mode, im1.size, None)
            im1.load()
            try:
                op = getattr(_imagingmath, op+"_"+im1.mode)
            except AttributeError:
                raise TypeError, "bad operand type for '%s'" % op
            _imagingmath.unop(op, out.im.id, im1.im.id)
        else:
            # binary operation
            im2 = self.__fixup(im2)
            if im1.mode != im2.mode:
                # convert both arguments to floating point
                if im1.mode != "F": im1 = im1.convert("F")
                if im2.mode != "F": im2 = im2.convert("F")
                if im1.mode != im2.mode:
                    raise ValueError, "mode mismatch"
            if im1.size != im2.size:
                # crop both arguments to a common size
                size = (min(im1.size[0], im2.size[0]),
                        min(im1.size[1], im2.size[1]))
                if im1.size != size: im1 = im1.crop((0, 0) + size)
                if im2.size != size: im2 = im2.crop((0, 0) + size)
                out = Image.new(mode or im1.mode, size, None)
            else:
                out = Image.new(mode or im1.mode, im1.size, None)
            im1.load(); im2.load()
            try:
                op = getattr(_imagingmath, op+"_"+im1.mode)
            except AttributeError:
                raise TypeError, "bad operand type for '%s'" % op
            _imagingmath.binop(op, out.im.id, im1.im.id, im2.im.id)
        return _Operand(out)

    # unary operators
    def __nonzero__(self):
        # an image is "true" if it contains at least one non-zero pixel
        return self.im.getbbox() is not None
    def __abs__(self):
        return self.apply("abs", self)
    def __pos__(self):
        return self
    def __neg__(self):
        return self.apply("neg", self)

    # binary operators
    def __add__(self, other):
        return self.apply("add", self, other)
    def __radd__(self, other):
        return self.apply("add", other, self)
    def __sub__(self, other):
        return self.apply("sub", self, other)
    def __rsub__(self, other):
        return self.apply("sub", other, self)
    def __mul__(self, other):
        return self.apply("mul", self, other)
    def __rmul__(self, other):
        return self.apply("mul", other, self)
    def __div__(self, other):
        return self.apply("div", self, other)
    def __rdiv__(self, other):
        return self.apply("div", other, self)
    def __mod__(self, other):
        return self.apply("mod", self, other)
    def __rmod__(self, other):
        return self.apply("mod", other, self)
    def __pow__(self, other):
        return self.apply("pow", self, other)
    def __rpow__(self, other):
        return self.apply("pow", other, self)

    # bitwise
    def __invert__(self):
        return self.apply("invert", self)
    def __and__(self, other):
        return self.apply("and", self, other)
    def __rand__(self, other):
        return self.apply("and", other, self)
    def __or__(self, other):
        return self.apply("or", self, other)
    def __ror__(self, other):
        return self.apply("or", other, self)
    def __xor__(self, other):
        return self.apply("xor", self, other)
    def __rxor__(self, other):
        return self.apply("xor", other, self)
    def __lshift__(self, other):
        return self.apply("lshift", self, other)
    def __rshift__(self, other):
        return self.apply("rshift", self, other)

    # logical
    def __eq__(self, other):
        return self.apply("eq", self, other)
    def __ne__(self, other):
        return self.apply("ne", self, other)
    def __lt__(self, other):
        return self.apply("lt", self, other)
    def __le__(self, other):
        return self.apply("le", self, other)
    def __gt__(self, other):
        return self.apply("gt", self, other)
    def __ge__(self, other):
        return self.apply("ge", self, other)

# conversions
def imagemath_int(self):
    return _Operand(self.im.convert("I"))
def imagemath_float(self):
    return _Operand(self.im.convert("F"))

# logical
def imagemath_equal(self, other):
    return self.apply("eq", self, other, mode="I")
def imagemath_notequal(self, other):
    return self.apply("ne", self, other, mode="I")

def imagemath_min(self, other):
    return self.apply("min", self, other)
def imagemath_max(self, other):
    return self.apply("max", self, other)

def imagemath_convert(self, mode):
    return _Operand(self.im.convert(mode))

ops = {}
for k, v in globals().items():
    if k[:10] == "imagemath_":
        ops[k[10:]] = v

##
# Evaluates an image expression.
#
# @param expression A string containing a Python-style expression.
# @keyparam options Values to add to the evaluation context.  You
#    can either use a dictionary, or one or more keyword arguments.
# @return The evaluated expression.  This is usually an image object,
#    but can also be an integer, a floating point value, or a pixel
#    tuple, depending on the expression.

def eval(expression, _dict={}, **kw):

    # build execution namespace
    args = ops.copy()
    args.update(_dict)
    args.update(kw)
    for k, v in args.items():
        if hasattr(v, "im"):
            args[k] = _Operand(v)

    import __builtin__
    out =__builtin__.eval(expression, args)
    try:
        return out.im
    except AttributeError:
        return out
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.