lesson42.py :  » Development » PyObjC » trunk » pyobjc » PyOpenGL-2.0.2.01 » OpenGL » Demo » NeHe » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Development » PyObjC 
PyObjC » trunk » pyobjc » PyOpenGL 2.0.2.01 » OpenGL » Demo » NeHe » lesson42.py
# NeHe Tutorial Lesson: 42 - Multiple Viewports
#
# Ported to PyOpenGL 2.0 by Brian Leair 18 Jan 2004
#
# This code was created by Jeff Molofee 2000
#
# The port was based on the PyOpenGL tutorials and from 
# PyOpenGLContext (tests/glprint.py)
#
# If you've found this code useful, feel free to let me know 
# at (Brian Leair telcom_sage@yahoo.com).
#
# See original source and C based tutorial at http://nehe.gamedev.net
#
# Note:
# -----
# This code is not an ideal example of Pythonic coding or use of OO techniques.  
# It is a simple and direct exposition of how to use the Open GL API in 
# Python via the PyOpenGL package. It also uses GLUT, a high quality 
# platform independent library. Due to using these APIs, this code is 
# more like a C program using procedural based programming.
#
# To run this example you will need:
# Python   - www.python.org (v 2.3 as of 1/2004)
# PyOpenGL   - pyopengl.sourceforge.net (v 2.0.1.07 as of 1/2004)
# Numeric Python  - (v.22 of "numpy" as of 1/2004) numpy.sourceforge.net
#
# Make sure to get versions of Numeric, and PyOpenGL to match your
# version of python.
#
#
# /***************************************************************************************************************
# *                                                      *                                                       *
# *  Lesson 42: Multiple Viewports                       *  Created:  05/17/2003                                 *
# *                                                      *                                                       *
# *  This Program Was Written By Jeff Molofee (NeHe)     *  Runs Much Faster (Many Useless Loops Removed)        *
# *  From http://nehe.gamedev.net.                       *                                                       *
# *                                                      *  Maze Code Is Still Very Unoptimized.  Speed Can Be   *
# *  I Wanted To Create A Maze, And Was Able To Find     *  Increased Considerably By Keeping Track Of Cells     *
# *  Example Code, But Most Of It Was Uncommented And    *  That Have Been Visited Rather Than Randomly          *
# *  Difficult To Figure Out.                            *  Searching For Cells That Still Need To Be Visited.   *
# *                                                      *                                                       *
# *  This Is A Direct Conversion Of Basic Code I Wrote   *  This Tutorial Demonstrates Multiple Viewports In A   *
# *  On The Atari XE Many Years Ago.                     *  Single Window With Both Ortho And Perspective Modes  *
# *                                                      *  Used At The Same Time.  As Well, Two Of The Views    *
# *  It Barely Resembles The Basic Code, But The Idea    *  Have Lighting Enabled, While The Other Two Do Not.   *
# *  Is Exactly The Same.                                *                                                       *
# *                                                      *********************************************************
# *  Branches Are Always Made From An Existing Path      *
# *  So There Should Always Be A Path Through The Maze   *
# *  Although It Could Be Quite Short :)                 *
# *                                                      *
# *  Do Whatever You Want With This Code.  If You Found  *
# *  It Useful Or Have Made Some Nice Changes To It,     *
# *  Send Me An Email: nehe@connect.ab.ca                *
# *                                                      *
# *******************************************************/
#

#
# Ported to PyOpenGL 2.0 by Brian Leair  Feb, 2004
#
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
import Numeric
import random
import time          # sleep () pause for 5 seconds when maze is complete
import sys



# *********************** Globals *********************** 
# Python 2.2 defines these directly
try:
  True
except NameError:
  True = 1==1
  False = 1==0


# Some api in the chain is translating the keystrokes to this octal string
# so instead of saying: ESCAPE = 27, we use the following.
ESCAPE = '\033'

# Number of the glut window.
window = 0


# // User Defined Variables

# // General Loops (Used For Seeking)
mx = 0
my = 0
done = False;                          # // Flag To Let Us Know When It's Done

width  = 128;                          # // Maze Width  (Must Be A Power Of 2)
height  = 128;                          # // Maze Height (Must Be A Power Of 2)

tex_data = None                          # numarray of unsigned bytes - # // Holds Our RGB Texture Data 

quadric = None                          # // The Quadric Object

r = [None ] * 4
g = [None ] * 4
b = [None ] * 4                          # // Random Colors (4 Red, 4 Green, 4 Blue)

xrot = 0
yrot = 0
zrot = 0                            # // Use For Rotation Of Objects



def UpdateTex(dmx, dmy):
  """ // Update Pixel dmx, dmy On The Texture """
  global tex_data

  tex_data[0+((dmx+(width*dmy))*3)]=255;            # // Set Red Pixel To Full Bright
  tex_data[1+((dmx+(width*dmy))*3)]=255;            # // Set Green Pixel To Full Bright
  tex_data[2+((dmx+(width*dmy))*3)]=255;            # // Set Blue Pixel To Full Bright
  return


def Reset ():
  """ // Reset The Maze, Colors, Start Point, Etc  """
  global tex_data, r, g, b, mx, my

  # ZeroMemory(tex_data, width * height *3);              // Clear Out The Texture Memory With 0's
  # This creates or array of unsigned bytes for our texture data. All values initialized to 0
  # tex_data = numarray.zeros ((width * height * 3), type="u1")
  tex_data = Numeric.zeros ((width * height * 3), "b")

  # This Will seed the random num stream with current system time.
  random.seed ()

  for loop in xrange (4):                        # // Loop So We Can Assign 4 Random Colors
    r[loop]=128 + random.randint (0,127)               # // Pick A Random Red Color (Bright)
    g[loop]=128 + random.randint (0,127)               # // Pick A Random Green Color (Bright)
    b[loop]=128 + random.randint (0,127)               # // Pick A Random Blue Color (Bright)

  mx = random.randint (0, (width/2) - 1) * 2                # // Pick A New Random X Position
  my = random.randint (0, (width/2) - 1) * 2                # // Pick A New Random Y Position
  return



# // Any GL Init Code & User Initialiazation Goes Here
def InitGL(Width, Height):        # We call this right after our OpenGL window is created.
  global tex_data, width, height, quadric

  Reset ()              # // Call Reset To Build Our Initial Texture, Etc.

  glEnable(GL_TEXTURE_2D);                  # // Enable Texture Mapping
  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
  glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); 
  glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, tex_data.tostring ());

  glClearColor (0.0, 0.0, 0.0, 0.0);              # // Black Background
  glClearDepth (1.0);                      # // Depth Buffer Setup
  glDepthFunc (GL_LEQUAL);                  # // The Type Of Depth Testing
  glEnable (GL_DEPTH_TEST);                  # // Enable Depth Testing

  glEnable(GL_COLOR_MATERIAL);                # // Enable Color Material (Allows Us To Tint Textures)

  quadric=gluNewQuadric();                  # // Create A Pointer To The Quadric Object
  gluQuadricNormals(quadric, GLU_SMOOTH);            # // Create Smooth Normals 
  gluQuadricTexture(quadric, GL_TRUE);            # // Create Texture Coords

  glEnable(GL_LIGHT0);                    # // Enable Light0 (Default GL Light)

  return True;                        # // Return TRUE (Initialization Successful)

def Update ():
  """ Solves/builds the maze. """
  global width, height, done, mx, my

  done=True;                              # // Set done To True
  for x in xrange (0, width, 2):                    # // Loop Through All The Rooms
    for y in xrange (0, height, 2):                  # // On X And Y Axis
      if (tex_data[((x+(width*y))*3)]==0):            # // If Current Texture Pixel (Room) Is Blank
        done=False;                        # // We Have To Set done To False (Not Finished Yet)

  if (done):                              # // If done Is True Then There Were No Unvisited Rooms
    # // Display A Message At The Top Of The Window, Pause For A Bit And Then Start Building A New Maze!
    glutSetWindowTitle ("Lesson 42: Multiple Viewports... 2003 NeHe Productions... Maze Complete!");
    time.sleep (5)
    glutSetWindowTitle ("Lesson 42: Multiple Viewports... 2003 NeHe Productions... Building Maze!");
    Reset();

  # // Check To Make Sure We Are Not Trapped (Nowhere Else To Move)
  if (((mx>(width-4) or tex_data[(((mx+2)+(width*my))*3)]==255)) and ((mx<2 or tex_data[(((mx-2)+(width*my))*3)]==255)) and
    ((my>(height-4) or tex_data[((mx+(width*(my+2)))*3)]==255)) and ((my<2 or tex_data[((mx+(width*(my-2)))*3)]==255))):
    while True:                        # // If We Are Trapped
      mx = random.randint (0, (width/2) - 1) * 2        # // Pick A New Random X Position
      my = random.randint (0, (height/2) - 1) * 2        # // Pick A New Random Y Position
      if (tex_data[((mx+(width*my))*3)]==0):
        break
        # // Keep Picking A Random Position Until We Find
        # // One That Has Already Been Tagged (Safe Starting Point)

  dir = random.randint (0,3)                  # // Pick A Random Direction

  if ((dir==0) and (mx<=(width-4))):                  # // If The Direction Is 0 (Right) And We Are Not At The Far Right
    if (tex_data[(((mx+2)+(width*my))*3)]==0):            # // And If The Room To The Right Has Not Already Been Visited
      UpdateTex(mx+1,my);                      # // Update The Texture To Show Path Cut Out Between Rooms
      mx+=2;                            # // Move To The Right (Room To The Right)

  if ((dir==1) and (my<=(height-4))):                  # // If The Direction Is 1 (Down) And We Are Not At The Bottom
    if (tex_data[((mx+(width*(my+2)))*3)]==0):            # // And If The Room Below Has Not Already Been Visited
      UpdateTex(mx,my+1);                      # // Update The Texture To Show Path Cut Out Between Rooms
      my+=2;                            # // Move Down (Room Below)

  if ((dir==2) and (mx>=2)):                      # // If The Direction Is 2 (Left) And We Are Not At The Far Left
    if (tex_data[(((mx-2)+(width*my))*3)]==0):            # // And If The Room To The Left Has Not Already Been Visited
      UpdateTex(mx-1,my);                      # // Update The Texture To Show Path Cut Out Between Rooms
      mx-=2;                            # // Move To The Left (Room To The Left)

  if ((dir==3) and (my>=2)):                      # // If The Direction Is 3 (Up) And We Are Not At The Top
    if (tex_data[((mx+(width*(my-2)))*3)]==0):            # // And If The Room Above Has Not Already Been Visited
      UpdateTex(mx,my-1);                      # // Update The Texture To Show Path Cut Out Between Rooms
      my-=2;                            # // Move Up (Room Above)

  UpdateTex(mx,my);                          # // Update Current Room
  return

last_milliseconds = 0
def DrawGLScene ():
  """ // Our Drawing Routine """
  global xrot, yrot, zrot
  global width, height, tex_data
  global quadric
  global r, g, b
  global last_milliseconds

  cur_milliseconds = glutGet (GLUT_ELAPSED_TIME)
  milliseconds = cur_milliseconds - last_milliseconds
  last_milliseconds = cur_milliseconds
  xrot+=milliseconds * .02;                  # // Increase Rotation On The X-Axis
  yrot+=milliseconds * .03;                  # // Increase Rotation On The Y-Axis
  zrot+=milliseconds * .015;                  # // Increase Rotation On The Z-Axis

  Update ()

  # // Get Window Dimensions
  window_width = glutGet (GLUT_WINDOW_WIDTH)
  window_height = glutGet (GLUT_WINDOW_HEIGHT)

  # // Update Our Texture... This Is The Key To The Programs Speed... Much Faster Than Rebuilding The Texture Each Time
  glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, 
    GL_RGB, GL_UNSIGNED_BYTE, tex_data.tostring ());

  glClear (GL_COLOR_BUFFER_BIT);                    # // Clear Screen

  for loop in xrange (4):                        # // Loop To Draw Our 4 Views
    glColor3ub(r[loop],g[loop],b[loop]);              # // Assign Color To Current View

    if (loop==0):                          # // If We Are Drawing The First Scene
      # // Set The Viewport To The Top Left.  It Will Take Up Half The Screen Width And Height
      glViewport (0, window_height/2, window_width/2, window_height/2);
      glMatrixMode (GL_PROJECTION);                # // Select The Projection Matrix
      glLoadIdentity ();                      # // Reset The Projection Matrix
      # // Set Up Ortho Mode To Fit 1/4 The Screen (Size Of A Viewport)
      gluOrtho2D(0, window_width/2, window_height/2, 0);

    if (loop==1):                          # // If We Are Drawing The Second Scene
      # // Set The Viewport To The Top Right.  It Will Take Up Half The Screen Width And Height
      glViewport (window_width/2, window_height/2, window_width/2, window_height/2);
      glMatrixMode (GL_PROJECTION);                # // Select The Projection Matrix
      glLoadIdentity ();                      # // Reset The Projection Matrix
      # // Set Up Perspective Mode To Fit 1/4 The Screen (Size Of A Viewport)
      gluPerspective( 45.0, float (width) / float (height), 0.1, 500.0 ); 

    if (loop==2):                          # // If We Are Drawing The Third Scene
      # // Set The Viewport To The Bottom Right.  It Will Take Up Half The Screen Width And Height
      glViewport (window_width/2, 0, window_width/2, window_height/2);
      glMatrixMode (GL_PROJECTION);                # // Select The Projection Matrix
      glLoadIdentity ();                      # // Reset The Projection Matrix
      # // Set Up Perspective Mode To Fit 1/4 The Screen (Size Of A Viewport)
      gluPerspective( 45.0, float (width) / float(height), 0.1, 500.0 ); 

    if (loop==3):                          # // If We Are Drawing The Fourth Scene
      # // Set The Viewport To The Bottom Left.  It Will Take Up Half The Screen Width And Height
      glViewport (0, 0, window_width/2, window_height/2);
      glMatrixMode (GL_PROJECTION);                # // Select The Projection Matrix
      glLoadIdentity ();                      # // Reset The Projection Matrix
      # // Set Up Perspective Mode To Fit 1/4 The Screen (Size Of A Viewport)
      gluPerspective( 45.0, float(width) / float(height), 0.1, 500.0 ); 

    glMatrixMode (GL_MODELVIEW);                  # // Select The Modelview Matrix
    glLoadIdentity ();                        # // Reset The Modelview Matrix

    glClear (GL_DEPTH_BUFFER_BIT);                  # // Clear Depth Buffer

    if (loop==0):                          # // Are We Drawing The First Image?  (Original Texture... Ortho)
      glBegin(GL_QUADS);                      # // Begin Drawing A Single Quad

      # // We Fill The Entire 1/4 Section With A Single Textured Quad.
      glTexCoord2f(1.0, 0.0);   glVertex2i(window_width/2, 0              );
      glTexCoord2f(0.0, 0.0);   glVertex2i(0,              0              );
      glTexCoord2f(0.0, 1.0);   glVertex2i(0,              window_height/2);
      glTexCoord2f(1.0, 1.0);   glVertex2i(window_width/2, window_height/2);

      glEnd();                          # // Done Drawing The Textured Quad

    if (loop==1):                          # // Are We Drawing The Second Image?  (3D Texture Mapped Sphere... Perspective)
      glTranslatef(0.0,0.0,-14.0);                # // Move 14 Units Into The Screen

      glRotatef(xrot,1.0,0.0,0.0);                # // Rotate By xrot On The X-Axis
      glRotatef(yrot,0.0,1.0,0.0);                # // Rotate By yrot On The Y-Axis
      glRotatef(zrot,0.0,0.0,1.0);                # // Rotate By zrot On The Z-Axis

      glEnable(GL_LIGHTING);                    # // Enable Lighting
      gluSphere(quadric,4.0,32,32);                # // Draw A Sphere
      glDisable(GL_LIGHTING);                    # // Disable Lighting
    
    if (loop==2):                          # // Are We Drawing The Third Image?  (Texture At An Angle... Perspective)
      glTranslatef(0.0,0.0,-2.0);                  # // Move 2 Units Into The Screen
      glRotatef(-45.0,1.0,0.0,0.0);                # // Tilt The Quad Below Back 45 Degrees.
      glRotatef(zrot/1.5,0.0,0.0,1.0);              # // Rotate By zrot/1.5 On The Z-Axis

      glBegin(GL_QUADS);                      # // Begin Drawing A Single Quad

      glTexCoord2f(1.0, 1.0); glVertex3f( 1.0,  1.0, 0.0);
      glTexCoord2f(0.0, 1.0); glVertex3f(-1.0,  1.0, 0.0);
      glTexCoord2f(0.0, 0.0); glVertex3f(-1.0, -1.0, 0.0);
      glTexCoord2f(1.0, 0.0); glVertex3f( 1.0, -1.0, 0.0);

      glEnd();                          # // Done Drawing The Textured Quad


    if (loop==3):                          # // Are We Drawing The Fourth Image?  (3D Texture Mapped Cylinder... Perspective)
      glTranslatef(0.0,0.0,-7.0);                  # // Move 7 Units Into The Screen
      glRotatef(-xrot/2,1.0,0.0,0.0);                # // Rotate By -xrot/2 On The X-Axis
      glRotatef(-yrot/2,0.0,1.0,0.0);                # // Rotate By -yrot/2 On The Y-Axis
      glRotatef(-zrot/2,0.0,0.0,1.0);                # // Rotate By -zrot/2 On The Z-Axis

      glEnable(GL_LIGHTING);                    # // Enable Lighting
      glTranslatef(0.0,0.0,-2.0);                  # // Translate -2 On The Z-Axis (To Rotate Cylinder Around The Center, Not An End)
      gluCylinder(quadric,1.5,1.5,4.0,32,16);            # // Draw A Cylinder
      glDisable(GL_LIGHTING);                    # // Disable Lighting

  glutSwapBuffers()                          # // Flush The GL Rendering Pipeline
  return True

# The function called when our window is resized (which shouldn't happen if you enable fullscreen, below)
def ReSizeGLScene(Width, Height):
  if Height == 0:            # Prevent A Divide By Zero If The Window Is Too Small 
    Height = 1

  glViewport(0, 0, Width, Height)    # Reset The Current Viewport And Perspective Transformation
  glMatrixMode(GL_PROJECTION)
  glLoadIdentity()
  # // field of view, aspect ratio, near and far
  # This will squash and stretch our objects as the window is resized.
  gluPerspective(45.0, float(Width)/float(Height), 0.1, 100.0)

  glMatrixMode(GL_MODELVIEW)
  glLoadIdentity()


# The function called whenever a key is pressed. Note the use of Python tuples to pass in: (key, x, y)  
def keyPressed(*args):
  global window

  # If escape is pressed, kill everything.
  if args[0] == ESCAPE:
    sys.exit ()
  # // Check To See If Spacebar Is Pressed
  if (args[0] == ' '):
    Reset();                            # // If So, Call Reset And Start A New Maze

  return

def main():
  global window
  # pass arguments to init
  glutInit(sys.argv)

  # Select type of Display mode:   
  #  Double buffer 
  #  RGBA color
  # Alpha components supported 
  # Depth buffer
  glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH)
  
  glutInitWindowSize(1024, 768)
  
  # the window starts at the upper left corner of the screen 
  glutInitWindowPosition(0, 0)
  
  # Okay, like the C version we retain the window id to use when closing, but for those of you new
  # to Python, remember this assignment would make the variable local and not global
  # if it weren't for the global declaration at the start of main.
  window = glutCreateWindow("Lesson 42: Multiple Viewports... 2003 NeHe Productions... Building Maze!");

  # Register the drawing function with glut, BUT in Python land, at least using PyOpenGL, we need to
  # set the function pointer and invoke a function to actually register the callback, otherwise it
  # would be very much like the C version of the code.  
  glutDisplayFunc(DrawGLScene)
  
  # Uncomment this line to get full screen.
  #glutFullScreen()

  # When we are doing nothing, redraw the scene.
  glutIdleFunc(DrawGLScene)
  
  # Register the function called when our window is resized.
  glutReshapeFunc(ReSizeGLScene)
  
  # Register the function called when the keyboard is pressed.  
  # The call setup glutSpecialFunc () is needed to receive 
  # "keyboard function or directional keys." 
  glutKeyboardFunc(keyPressed)
  glutSpecialFunc(keyPressed)

  # We've told Glut the type of window we want, and we've told glut about
  # various functions that we want invoked (idle, resizing, keyboard events).
  # Glut has done the hard work of building up thw windows DC context and 
  # tying in a rendering context, so we are ready to start making immediate mode
  # GL calls.
  # Call to perform inital GL setup (the clear colors, enabling modes, and most releveant -
  # consturct the displays lists for the bitmap font.
  InitGL(640, 480)

  # Start Event Processing Engine  
  glutMainLoop()

# Print message to console, and kick off the main to get it rolling.
if __name__ == "__main__":
  print "Hit ESC key to quit."
  main()


www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.