PlanarEmbedding.py :  » Development » Leo » Leo-4.7.1-final » leo » extensions » Gato » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Development » Leo 
Leo » Leo 4.7.1 final » leo » extensions » Gato » PlanarEmbedding.py
################################################################################
#
#       This file is part of Gato (Graph Algorithm Toolbox) 
#
#  file:   PlanarEmbedding.py
#  author: Ramazan Buzdemir (buzdemir@zpr.uni-koeln.de)
#
#       Copyright (C) 1998-2005, Alexander Schliep, Winfried Hochstaettler and 
#       Copyright 1998-2001 ZAIK/ZPR, Universitaet zu Koeln
#                                   
#       Contact: schliep@molgen.mpg.de, wh@zpr.uni-koeln.de             
#
#       Information: http://gato.sf.net
#
#       This library is free software; you can redistribute it and/or
#       modify it under the terms of the GNU Library General Public
#       License as published by the Free Software Foundation; either
#       version 2 of the License, or (at your option) any later version.
#
#       This library is distributed in the hope that it will be useful,
#       but WITHOUT ANY WARRANTY; without even the implied warranty of
#       MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
#       Library General Public License for more details.
#
#       You should have received a copy of the GNU Library General Public
#       License along with this library; if not, write to the Free
#       Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
#
#
#
#       This file is version $Revision: 1.1 $ 
#                       from $Date: 2007/10/04 14:36:39 $
#             last change by $Author: edream $.
#
################################################################################


###############################################################################
###############################################################################
###############################################################################
#                                                                             #
#                            AN IMPLEMENTATION OF                             #
#                    THE "DE FRAYSSEIX,PACH,POLLACK(FPP)"                     #
#                             AND THE "SCHNYDER"                              #
#                   PLANAR STRAIGHT-LINE EMBEDDING ALGORITHM                  #
#                                                                             #
###############################################################################
#                                                                             #
# References:                                                                 #
#                                                                             #
# [FPP90] H. de Fraysseix, J.Pach, and R.Pollack .                            #
#         "How to draw a planar graph on a grid."                             #
#         Combinatorian, 10:41-51,1990                                        #
# [Sch90] W.Schnyder.                                                         #
#         "Embedding planar graphs on the grid."                              #
#         In 1st Annual ACM-SIAM Symposium on Discrete Algorithms,            #
#         pages 138-14, San Francisco, 1990                                   #
#                                                                             #
###############################################################################



#=============================================================================#
from PlanarityTest import *
from copy import deepcopy
from DataStructures import Stack
from tkMessageBox import showinfo
#=============================================================================#



#=============================================================================#
class pe_Point:

    def __init__(self,xpos,ypos):
        self.x=xpos
        self.y=ypos
        #=============================================================================#
        
        
        
        #=============================================================================#
class pe_Node:

    def __init__(self,x,y):
        self.xpos=x
        self.ypos=y
        self.canOrder=None
        self.t1,self.t2,self.t3=None,None,None 
        self.p1,self.p2,self.p3=None,None,None 
        self.r1,self.r2,self.r3=None,None,None 
        self.xsch,self.ysch=None,None
        self.xfpp,self.yfpp=None,None
        self.adjacentEdges=[]
        self.adjacentNodes=[]
        self.M=[]
        self.oppositeNodes=[]
        self.outface=None
        
        self.path1=[]
        self.path2=[]
        self.path3=[]   
        
    def addEdge(self,e,v):
        self.adjacentEdges.append(e)
        self.adjacentNodes.append(v)
        #=============================================================================#
        
        
        
        #=============================================================================#
class pe_Edge: # directed from p1->p2

    def __init__(self,index_p1,index_p2,ep1,ep2,tf):
        self.p1=index_p1
        self.p2=index_p2
        self.label=None # normal labelling: 1,-1,2,-2,3,-3
        self.original=tf
        self.outface=None
        #=============================================================================#
        
        
        
        #=============================================================================#
class pe_Graph:

    #-------------------------------------------------------------------------
    def printGraph(self):
    
        for i in range(0,len(self.nodes)):
            n=self.nodes[i]
            print "--------Node:",i,"--------------"
            print "xpos=",n.xpos,"ypos=",n.ypos
            print "canOrder=",n.canOrder
            print "t1=",n.t1,"t2=",n.t2,"t3=",n.t3
            print "p1=",n.p1,"p2=",n.p2,"p3=",n.p3
            print "r1=",n.r1,"r2=",n.r2,"r3=",n.r3
            print "xsch=",n.xsch,"ysch=",n.ysch
            print "xfpp=",n.xfpp,"yfpp=",n.yfpp
            print "outface=",n.outface
            
        print
        for i in range(0,len(self.edges)):
            e=self.edges[i]
            print "-------Edge:",i,"---------------"
            print "p1=",e.p1,"p2=",e.p2
            print "label=",e.label
            print "original=",e.original,"outface=",e.outface
            
        print
        for i in range(0,len(self.nodes)):
            n=self.nodes[i]
            
            print "---------------------------"
            print i,":"
            
            print "adjacentEdges:",
            for j in range(0,len(n.adjacentEdges)):
                print n.adjacentEdges[j],
            print
            
            print "adjacentNodes:",
            for j in range(0,len(n.adjacentNodes)):
                print n.adjacentNodes[j],
            print
            
            print "M:",
            for j in range(0,len(n.M)):
                print n.M[j],
            print
            
            print "oppositeNodes:",
            for j in range(0,len(n.oppositeNodes)):
                print n.oppositeNodes[j],
            print
            
            print "path1:",
            for j in range(0,len(n.path1)):
                print n.path1[j],
            print
            
            print "path2:",
            for j in range(0,len(n.path2)):
                print n.path2[j],
            print
            
            print "path3:",
            for j in range(0,len(n.path3)):
                print n.path3[j],
            print
            #-------------------------------------------------------------------------
            
            
            #-------------------------------------------------------------------------
    def __init__(self):
        self.nodes=[]
        self.edges=[]
        
        self.orderK,self.orderIndexVk=None,None
        self.FPPk=None
        self.labelK=None
        self.indexV1,self.indexV2,self.indexV3=-1,-1,-1
        #-------------------------------------------------------------------------
        
        
        #-------------------------------------------------------------------------
    def checkIndex(self,index, p1):
        if index<0:
            tempNode1=pe_Node(p1.x,p1.y)
            self.nodes.append(tempNode1)
            return (len(self.nodes)-1)
        return index
        #-------------------------------------------------------------------------
        
        
        #-------------------------------------------------------------------------
    def storeEdge(self,indexP1,indexP2,p1,p2,tf):
        ep1=pe_Point(self.nodes[indexP1].xpos,self.nodes[indexP1].ypos)
        ep2=pe_Point(self.nodes[indexP2].xpos,self.nodes[indexP2].ypos)
        self.edges.append(pe_Edge(indexP1,indexP2,ep1,ep2,tf))
        #-------------------------------------------------------------------------
        
        
        
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        # TRIANGULATION
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        # Algorithm:
        # For each vertex v
        #     for v's each pair of consecutive neighbours u & w
        #             add the edge in
        #             add u into w's incident list in ccw order
        #             add w into u's incident list in ccw order
        #             repeat this procedure
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        
        #-------------------------------------------------------------------------
    def isEdge(self,u,w):
        # check if w is in u's adjacentEdges
        if w in u.adjacentNodes: return 1
        return 0
        #-------------------------------------------------------------------------
        
        
        #-------------------------------------------------------------------------
    def adjacentVertex(self,v,e):
        return v.adjacentNodes[e]
        #-------------------------------------------------------------------------
        
        
        #-------------------------------------------------------------------------
    def consider(self):
        for indexV in range(0,len(self.nodes)):
            v=self.nodes[indexV]
            
            if len(v.adjacentEdges)<2: continue
            
            for j in range(0,len(v.adjacentEdges)):
                # get two consective neighbours of v
                indexU=self.adjacentVertex(v,j)
                u=self.nodes[indexU]
                k=j+1
                if k==len(v.adjacentEdges): k=0
                indexW=self.adjacentVertex(v,k)
                w=self.nodes[indexW]
                
                # check if (u, w) is an edge
                if not(self.isEdge(u,indexW)):
                    pointu=pe_Point(u.xpos,u.ypos)
                    pointw=pe_Point(w.xpos,w.ypos)
                    self.storeEdge(indexU,indexW,pointu, pointw,0)
                    
                    tempi1=indexV
                    tempe1=len(self.edges)-1
                    
                    # add u to w's adjacentEdges (with ordering)
                    # add u after v in w's adjacentEdges
                    indexVinW=w.adjacentNodes.index(tempi1)+1
                    w.adjacentEdges.insert(indexVinW,tempe1)
                    w.adjacentNodes.insert(indexVinW,indexU)
                    
                    # add w to u's incitentList (with ordering)
                    # add w before v in u's adjacentEdges
                    indexVinU=u.adjacentNodes.index(tempi1)
                    u.adjacentEdges.insert(indexVinU,tempe1)
                    u.adjacentNodes.insert(indexVinU,indexW)
                    
                    # Don't forget to set original=0
                    self.edges[-1].original=0
                    
                    return 1
        return 0
        #-------------------------------------------------------------------------
        
        
        #-------------------------------------------------------------------------
    def triangulate(self):
        finish=1
        while finish:
            finish=self.consider()
            #-------------------------------------------------------------------------
            
            #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
            
            
            
            #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
            # CANONICAL ORDERING
            #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
            # Algorithm:
            # Pick up a face as outface
            # Assign its vertices with canonical ordering 1,2, and n
            #
            # For k from n-1 to 3 
            #     remove Vk+1 from graph
            #     find all Vk+1's neighbours in the new graph Gk
            #     update the vertices on the outface
            #     assign Vk to one of these neighbours on Ck that
            #                                              is not V1
            #                                              is not V2
            #                                              is not incident to a chord
            #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
            
            #-------------------------------------------------------------------------
    def ordering(self):
        self.orderK=len(self.nodes)
        
        # Now, remove Vn from the graph, and let Vn-1 be the vertex 
        # that is on the outerface and not incident to a chord.
        k=len(self.nodes)
        while k>3:
            self.orderIndexVk=self.order()
            k=k-1
            #-------------------------------------------------------------------------
            
            
            #-------------------------------------------------------------------------
    def initOrder(self):
        # NOTE: initially, all the canOrder are 0
        for i in range(0,len(self.nodes)):
            self.nodes[i].canOrder=0
            
            # Base: find v1, v2, and vn, which define a outerface
        if self.indexV1<0:
            self.indexV1=0
            v1=self.nodes[self.indexV1]
            
            self.indexV2=v1.adjacentNodes[0]
            v2=self.nodes[self.indexV2]
            
            self.indexVn=v1.adjacentNodes[1]
            vk=self.nodes[self.indexVn]
        else:
            v1=self.nodes[self.indexV1]
            v2=self.nodes[self.indexV2]
            vk=self.nodes[self.indexVn]
            
        v1.canOrder=1
        v2.canOrder=2
        vk.canOrder=len(self.nodes)
        
        # initialize all the outface to 0
        for j in range(0,len(self.nodes)): 
            self.nodes[j].outface=0
            
        self.orderK=len(self.nodes)
        self.orderIndexVk=self.indexVn
        return self.indexVn
        #-------------------------------------------------------------------------
        
        
        #-------------------------------------------------------------------------
        # Now, remove Vn from the graph, and let Vn-1 be the vertex 
        # that is on the outerface and not incident to a chord
    def order(self):
        if self.orderK>3:
            v1=self.nodes[self.indexV1]
            v2=self.nodes[self.indexV2]
            vk=self.nodes[self.orderIndexVk]
            # "remove" Vk from the graph
            # find the neighbours of Vk, that have canOrder number < k
            # define they are on the outface
            for i in range(0,len(vk.adjacentNodes)):
                neighbour=self.nodes[vk.adjacentNodes[i]]
                
                if neighbour.canOrder<self.orderK:
                    neighbour.outface=1
                    
                    # find the node that is not v1, v2, and not incident to any chord,
                    # let it be Vk-1
            found=0
            j=0
            while not(found) and j<len(self.nodes):
                candidate=self.nodes[j]
                if (candidate.outface and candidate!=v1 and
                    candidate!=v2 and candidate.canOrder<self.orderK):
                    # if it only has 2 neighbours on the outface,
                    # we set it to be Vk-1
                    count=0
                    for i in range(0,len(candidate.adjacentNodes)):
                        checkIndex=candidate.adjacentNodes[i]
                        checkNode=self.nodes[checkIndex]
                        if (checkNode.outface and
                            (checkNode.canOrder<self.orderK)):
                            count=count+1
                    if count==2:
                        found=1
                        vk=candidate
                        candidate.canOrder=self.orderK-1
                        
                        self.orderK=self.orderK-1
                        self.orderIndexVk=j
                        return j
                j=j+1
        return -1
        #-------------------------------------------------------------------------
        
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        
        
        
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        # EDGE LABELLING 
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        # Algorithm:
        # In triangle V1, V2, V3 (canonical order)
        #     label V3->V1 with 1
        #     label V3->V2 with 2
        #
        # For k from 3 to n-1   
        #     add Vk+1 to graph Gk
        #     find all Vk+1's neighbours in Gk in order
        #     label the left most edge from top to bottom with 1
        #     label the right most edge from top to bottom with 2
        #     label the rest from bottom to top with 3
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        
        #-------------------------------------------------------------------------
    def labelling(self):
        self.initLabel()
        #steps
        for k in range(3,len(self.nodes)):
            self.labelK=k
            self.labelStep()
            # looking for v4, v5, ..., vn
            #-------------------------------------------------------------------------
            
            
            #-------------------------------------------------------------------------
            # label  label if the edge is indexP1 -> indexP2
            #       -label if the edge is indexP2 -> indexP1
    def labelEdge(self,indexP1,indexP2,label):
        e=self.edges[0]
        
        if e.p1==indexP1 and e.p2==indexP2:
            self.edges[0].label=label
            return
        if e.p1==indexP2 and e.p2==indexP1:
            self.edges[0].label=-label 
            return
            
        for i in range(1,len(self.edges)):
            e=self.edges[i]
            if e.p1==indexP1 and e.p2==indexP2:
                e.label=label
                return
            if e.p1==indexP2 and e.p2==indexP1:
                e.label=-label
                return
                #-------------------------------------------------------------------------
                
                
                #-------------------------------------------------------------------------
    def findIndexOfVk(self,k):
        indexVk=-1
        i=0
        
        while indexVk<0:
            if self.nodes[i].canOrder==k:
                return i
            i=i+1
        return -1
        #-------------------------------------------------------------------------
        
        
        #-------------------------------------------------------------------------
    def initLabel(self):
        for j in range(0,len(self.edges)):
            self.edges[j].label=0
            
        self.indexV3=self.findIndexOfVk(3)
        
        # find v1, v2, v3
        v1=self.nodes[self.indexV1]
        v2=self.nodes[self.indexV2]
        v3=self.nodes[self.indexV3]
        
        # labelling should be done at the same time as FPP is running
        # (because we need the outface information)
        # but we are doing this separately, for the sak of clearness
        
        # label V3 -> V1 by 1
        self.labelEdge(self.indexV3,self.indexV1,1)
        
        # label V3 -> V2 by 2
        self.labelEdge(self.indexV3,self.indexV2,2)
        
        self.labelK = 3
        #-------------------------------------------------------------------------
        
        
        #-------------------------------------------------------------------------
    def labelStep(self):
        k=self.labelK
        n=len(self.nodes)
        
        if k<n:
            indexVkplus1=self.findIndexOfVk(k+1)
            vkplus1=self.nodes[indexVkplus1]
            
            # labelling should be done at the same time as FPP is running
            # (because we need the outface information)
            # case 1: vk+1 is "to the right" of vk
            # case 2: vk+1 is "to the left" of vk
            # case 3: vk+1 "covers" vk
            # all make the first element in Vk+1's oppositeNodes label 1, 
            #        last                                        2,
            #         rest                          3.
            # oppositeNodes is done in FPP
            
            first=vkplus1.oppositeNodes[0]
            self.labelEdge(indexVkplus1,first,1)
            
            last=vkplus1.oppositeNodes[-1]
            self.labelEdge(indexVkplus1,last,2)
            
            if len(vkplus1.oppositeNodes)>2:
                for l in range(1,len(vkplus1.oppositeNodes)-1):
                    self.labelEdge(indexVkplus1,vkplus1.oppositeNodes[l],-3)
                    
            self.labelK=self.labelK+1
        return self.labelK
        #-------------------------------------------------------------------------
        
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        
        
        
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        # FPP
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        # Algorithm:
        # 3. Initialize x,y coordinates and M for V1,V2, and V3
        #                               v1.M={v1,v2,v3}
        #                               v2.M={v2}
        #                               v3.M={v2,v3}
        # 4. In the canonical order, for each vertex
        #       1. find the vertices on the outface in order
        #       2. shift vertices in the subset M of Wp+1 and Wq
        #       3. calculate the x,y coordinates of Vk+1
        #       4. updating M for all the outface vertices
        #                               wi.M=wi.M+{vk+1}  for i<=p
        #                               vk+1.M=wp+1.M+{vk+1}
        #                               wj.M=wj.M  for j>=q
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        
        #-------------------------------------------------------------------------
    def FPP(self):
        self.initFPP()
        
        # steps
        for k in range(3,len(self.nodes)):
            self.FPPk=k
            self.FPPstep()
            #-------------------------------------------------------------------------
            
            
            #-------------------------------------------------------------------------
    def initFPP(self):
        self.indexV3=self.findIndexOfVk(3)
        
        # initialize all the outface to 0
        for j in range(0,len(self.nodes)):
            self.nodes[j].outface=0
            self.nodes[j].xfpp=0
            self.nodes[j].yfpp=0
            self.nodes[j].M=[]
            self.nodes[j].oppositeNodes=[]
            
            # find v1, v2, v3
        v1=self.nodes[self.indexV1]
        v2=self.nodes[self.indexV2]
        v3=self.nodes[self.indexV3] 
        
        # basic
        v1.xfpp=0; v1.yfpp=0
        v2.xfpp=2; v2.yfpp=0
        v3.xfpp=1; v3.yfpp=1
        
        # v1.M={v1,v2,v3} v2.M={v2} v3.M={v2,v3}
        v1.M.append(self.indexV1)
        v1.M.append(self.indexV2)
        v1.M.append(self.indexV3)
        
        v2.M.append(self.indexV2)
        
        v3.M.append(self.indexV2)
        v3.M.append(self.indexV3) 
        
        self.nodes[self.indexV1].outface=1
        self.nodes[self.indexV2].outface=1
        self.nodes[self.indexV3].outface=1
        
        self.FPPk=3
        #-------------------------------------------------------------------------
        
        
        #-------------------------------------------------------------------------
    def FPPstep(self):
        k=self.FPPk
        n=len(self.nodes)
        
        if k<n:
            indexVkplus1=self.findIndexOfVk(k+1)
            vkplus1=self.nodes[indexVkplus1]
            
            # find the vertices on the outerface of Gk,
            # and in order of p, p+1, ..., q
            # find the neighbours of v(k+1) with CanOrder <= k,
            # and sort them according to their xfpp
            for i in range(0,len(vkplus1.adjacentNodes)):
                neighbour=self.nodes[vkplus1.adjacentNodes[i]]
                if neighbour.canOrder<=k:
                    insertPlace=-1
                    j=0
                    while insertPlace<0 and j<len(vkplus1.oppositeNodes):
                        if (neighbour.xfpp <
                            self.nodes[vkplus1.oppositeNodes[j]].xfpp):
                            insertPlace=j
                        j=j+1
                        
                    if insertPlace==-1:
                        vkplus1.oppositeNodes.append(
                            self.nodes.index(neighbour))
                    else:
                        vkplus1.oppositeNodes.insert(insertPlace,
                                                 self.nodes.index(neighbour))
                        
                        # find the vertices on the outface
            self.nodes[indexVkplus1].outface=1
            if len(vkplus1.oppositeNodes)>2:
                for i in range(1,len(vkplus1.oppositeNodes)-1):
                    temp=vkplus1.oppositeNodes[i]
                    self.nodes[temp].outface=0
                    
                    # shift all vertices in w(p+1).M right by 1 unit
            indexWpplus1=vkplus1.oppositeNodes[1]
            w=self.nodes[indexWpplus1]
            for i in range(0,len(w.M)):
                temp=w.M[i]
                self.nodes[temp].xfpp=self.nodes[temp].xfpp+1
                
                # shift all vertices in w(q).M right by 1 unit
            Wq=self.nodes[vkplus1.oppositeNodes[-1]]
            for i in range(0,len(Wq.M)): 
                self.nodes[Wq.M[i]].xfpp=self.nodes[Wq.M[i]].xfpp+1
                
                # add in v(k+1)
                
            Wp=self.nodes[vkplus1.oppositeNodes[0]]
            x1=Wp.xfpp
            y1=Wp.yfpp
            x2=Wq.xfpp
            y2=Wq.yfpp
            
            vkplus1.xfpp=(x1+x2+y2-y1)/2
            vkplus1.yfpp=(x2-x1+y2+y1)/2
            
            # update M
            # wi.M = wi.M + v(k+1)  for i<=p
            for i in range(0,n):
                wi=self.nodes[i]
                if wi.outface  and  wi.xfpp<w.xfpp and i!=indexVkplus1:
                    wi.M.append(indexVkplus1)
                    
                    # v(k+1).M = w(p+1).M + v(k+1)
            vkplus1.M.append(indexVkplus1)
            for i in range(0,len(w.M)):
                vkplus1.M.append(w.M[i])
                
                
            self.FPPk=self.FPPk+1
            
        return self.FPPk
        #-------------------------------------------------------------------------
        
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        
        
        
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        # SCHNYDER
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        # Algorithm:
        # 4. Calculate for each interior vertex v
        #              pathi : vertices on the i-path from v to v1, v2, or vn
        #              pn : number of vertices on the i-path starting at v
        #              ti : number of vertices in the subtree of Ti rooted at v
        #              ri : number of vertices in region Ri(v) for v
        # 5. Calculate barycentric representation for each v: vi'=ri - pi-1
        #                                            v->(v1',v2',v3')/(n-1)
        #    A barycentric representation of a graph G is 
        #    an injective function v->(v1,v2,v3) that satisfies:
        #      a.) v1+v2+v3=1 for all v
        #      b.) for each edge (x,y) and each vertex z not x or y,
        #          there is some k (k=1,2 or 3) such that xk < zk and yk < zk   
        #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        
        #-------------------------------------------------------------------------
    def calculateP(self,path123):
        for i in range(0,len(self.nodes)):
            v=self.nodes[i] 
            finalNode=0
            
            if (v.canOrder!=1 and v.canOrder!=2 and 
                v.canOrder!=len(self.nodes)):
                # v is an interior vertex
                if path123==1:
                    v.p1=1
                    v.path1.append(i)
                    finalNode=1
                if path123==2:
                    v.p2=1
                    v.path2.append(i)
                    finalNode=2
                if path123==3:
                    v.p3=1
                    v.path3.append(i)
                    finalNode=len(self.nodes)
                    
                vNext=v
                while vNext.canOrder!=finalNode:
                    j=0
                    found=0
                    while (not(found) and j<len(vNext.adjacentEdges)):
                        curEdge=self.edges[vNext.adjacentEdges[j]]
                        curLabel=curEdge.label
                        # HIER IST IRGENDWO EIN FEHLER !!!!!!
                        if ( ((curLabel==path123) and 
                              (curEdge.p1==self.nodes.index(vNext))) or 
                             ((curLabel==-path123) and
                              (curEdge.p2==self.nodes.index(vNext))) ):
                            found=1
                            vNextIndex=vNext.adjacentNodes[j]
                            vNext=self.nodes[vNextIndex]
                            
                            if path123==1:
                                v.p1=v.p1+1
                                v.path1.append(vNextIndex)
                            if path123==2:
                                v.p2=v.p2+1
                                v.path2.append(vNextIndex)
                            if path123==3:
                                v.p3=v.p3+1
                                v.path3.append(vNextIndex)
                        j=j+1
                        #-------------------------------------------------------------------------
                        
                        
                        #-------------------------------------------------------------------------
    def traverse(self,label,v,count):
        for j in range(0,len(v.adjacentEdges)):
            curEdge=self.edges[v.adjacentEdges[j]]
            curLabel=curEdge.label
            if ( ((curLabel==-label) and 
                  (curEdge.p1==self.nodes.index(v))) or
                 ((curLabel==label) and
                  (curEdge.p2==self.nodes.index(v))) ):
                vNextIndex=v.adjacentNodes[j]
                vNext=self.nodes[vNextIndex]
                count=count+1
                count=self.traverse(label,vNext,count)
        return count
        #-------------------------------------------------------------------------
        
        
        #-------------------------------------------------------------------------
    def Schnyder(self):
        # we need to compute p1, p2, p3 and t1, t2, t3 and
        # r1, r2, r3 for each vertex
    
        # Initialize the data
        for i in range(0,len(self.nodes)):
            tempnn1=self.nodes[i]
            tempnn1.p1=0
            tempnn1.p2=0
            tempnn1.p3=0
            tempnn1.t1=0
            tempnn1.t2=0
            tempnn1.t3=0
            tempnn1.r1=0
            tempnn1.r2=0
            tempnn1.r3=0
            tempnn1.xsch=0
            tempnn1.ysch=0
            tempnn1.path1=[]
            tempnn1.path2=[]
            tempnn1.path3=[]
            
            # find those for v1, v2, and vn
        v1=self.nodes[self.indexV1]
        v2=self.nodes[self.indexV2]
        vn=self.nodes[self.indexVn]
        v1.t1=0; v1.t2=1; v1.t3=1;
        v2.t1=1; v2.t2=0; v2.t3=1;
        vn.t1=1; vn.t2=1; vn.t3=0;
        v1.p1=0; vn.p1=1;
        v2.p2=0; vn.p2=1;
        
        v1.xsch=len(self.nodes)-1; v1.ysch=0;
        v2.xsch=0; v2.ysch=len(self.nodes)-1;
        vn.xsch=0; vn.ysch = 0;
        
        
        # can we get p1/p2/p3 while doing ordering or labelling???
        # Not really!!! We cannot get p3 easily
        
        # calculate p1, p2, p3 by going through path1, path2, path3
        self.calculateP(1)
        self.calculateP(2)
        self.calculateP(3)
        
        # calculate t1, t2, t3
        # exterior vertices are done in ordering
        # for each interior vertex v
        for i in range(0,len(self.nodes)):
            v=self.nodes[i]
            
            if (v.canOrder!=1 and v.canOrder!=2 and
                v.canOrder!=len(self.nodes)):
                # v is an interior vertex
                v.t1=self.traverse(1,v,1) # Itself is in the subtree
                v.t2=self.traverse(2,v,1) # Itself is in the subtree
                v.t3=self.traverse(3,v,1) # Itself is in the subtree
                
                # calculate r1, r2, r3
                # we need 3 vectors in each vertex to store the path 1,2,3
                # v.ri = ti of all vertices on P(i+1)+ti of all vertices on P(i-1)-ti
        for i in range(0,len(self.nodes)):
            v=self.nodes[i]
            
            if (v.canOrder!=1 and v.canOrder!=2 and
                v.canOrder!=len(self.nodes)):
                # v is an interior vertex
                v.r1=0; v.r2=0; v.r3=0;
                
                # r1
                for j in range(0,len(v.path2)):
                    onPath=self.nodes[v.path2[j]]
                    v.r1=v.r1+onPath.t1
                for j in range(0,len(v.path3)):
                    onPath=self.nodes[v.path3[j]]
                    v.r1=v.r1+onPath.t1
                v.r1=v.r1-v.t1
                
                # r2
                for j in range(0,len(v.path1)):
                    onPath=self.nodes[v.path1[j]]
                    v.r2=v.r2+onPath.t2
                for j in range(0,len(v.path3)):
                    onPath=self.nodes[v.path3[j]]
                    v.r2=v.r2+onPath.t2
                v.r2=v.r2-v.t2
                
                # r3
                for j in range(0,len(v.path1)):
                    onPath=self.nodes[v.path1[j]]
                    v.r3=v.r3+onPath.t3
                for j in range(0,len(v.path2)):
                    onPath=self.nodes[v.path2[j]]
                    v.r3=v.r3+onPath.t3
                v.r3=v.r3-v.t3
                
                
                # The coordinates of each vertex is (v'1, v'2), 
                # where v'i = ri - p(i-1)
                # exterior vertices are done in ordering
                # for each interior vertex v
        for i in range(0,len(self.nodes)):
            v=self.nodes[i]
            
            if (v.canOrder!=1 and v.canOrder!=2 and
                v.canOrder!=len(self.nodes)):
                # v is an interior vertex
                v.xsch=(v.r1-v.p3)
                v.ysch=(v.r2-v.p1)
                #-------------------------------------------------------------------------
                
                #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                
                
                #=============================================================================#
                # LOAD GRAPH
                
def load_graph(InGraph):

    if InGraph.Order()<3:
        return 0
        
    ccwOrderedEdges=planarity_test(InGraph)
    if not(ccwOrderedEdges):
        showinfo("Planarity Test", "Graph is NOT PLANAR!")
        return 0
        
    graph1=pe_Graph()
    
    i=0
    NodeIndex={}
    for v in InGraph.vertices:
        NodeIndex[v]=i
        i=i+1
        
    for i in range(0,InGraph.Order()):
        graph1.nodes.append(pe_Node(i,i))
        
    EdgeIndex={}
    for i in range(0,len(ccwOrderedEdges)):
        n1=NodeIndex[ccwOrderedEdges[i][0]]
        n2=NodeIndex[ccwOrderedEdges[i][1]]
        ccwOrderedEdges[i]=(n1,n2)
        EdgeIndex[(n1,n2)]=None
        
    i=0
    for e in ccwOrderedEdges:
        if EdgeIndex[e]==None:
            EdgeIndex[e]=i
            EdgeIndex[(e[1],e[0])]=i
            i=i+1
            p1=pe_Point(e[0],e[0])
            p2=pe_Point(e[1],e[1])
            tempe1=pe_Edge(e[0],e[1],p1,p2,1)
            graph1.edges.append(tempe1)
            
        graph1.nodes[e[0]].addEdge(EdgeIndex[e],e[1])
        
    return graph1
    #=============================================================================#
    
    
    
    #=============================================================================#
def FPP_PlanarCoords(G): # (2n-4)*(n-2) GRID
# Algorithm: 
# 1. Triangulate orginal graph
# 2. Canonical order all vertices
# 3. Initialize x,y coordinates and M for V1,V2, and V3
#                               v1.M={v1,v2,v3}
#                               v2.M={v2}
#                               v3.M={v2,v3}
# 4. In the canonical order, for each vertex
#       1. find the vertices on the outface in order
#       2. shift vertices in the subset M of Wp+1 and Wq
#       3. calculate the x,y coordinates of Vk+1
#       4. updating M for all the outface vertices
#                               wi.M=wi.M+{vk+1}  for i<=p
#                               vk+1.M=wp+1.M+{vk+1}
#                               wj.M=wj.M  for j>=q

    #-------------------------------------------------------------------------
    # LOAD GRAPH
    graph=load_graph(G)
    if graph==0: return 0
    #-------------------------------------------------------------------------
    
    
    #-------------------------------------------------------------------------
    # 1.TRIANGULATION
    graph.triangulate()
    #-------------------------------------------------------------------------
    
    
    #-------------------------------------------------------------------------
    # 2.CANONICAL ORDERING
    graph.initOrder()
    graph.ordering()
    #-------------------------------------------------------------------------
    
    
    #-------------------------------------------------------------------------
    # 3+4. FPP 
    graph.FPP()
    #-------------------------------------------------------------------------
    
    
    #-------------------------------------------------------------------------
    # COORDINATES
    G.xCoord={}
    G.yCoord={}
    n=len(graph.nodes)
    for i in range(0,n):
        G.xCoord[G.vertices[i]]=graph.nodes[i].xfpp*float(900/(2*n-4))+50
        G.yCoord[G.vertices[i]]=1000-(graph.nodes[i].yfpp*float(900/(n-2))+50)
    return 1
    #-------------------------------------------------------------------------
    
    #=============================================================================#
    
    
    
    #=============================================================================#
def Schnyder_PlanarCoords(G): # (n-1)*(n-1) GRID
# Algorithm: 
# 1. Triangulate orginal graph
# 2. Canonical order all vertices
# 3. Normal label interior edges of G to i->Ti (i=1,2,3)
# 4. Calculate for each interior vertex v
#              pathi : vertices on the i-path from v to v1, v2, or vn
#              pn : number of vertices on the i-path starting at v
#              ti : number of vertices in the subtree of Ti rooted at v
#              ri : number of vertices in region Ri(v) for v
# 5. Calculate barycentric representation for each v: vi'=ri - pi-1
#                                            v->(v1',v2',v3')/(n-1)
#    A barycentric representation of a graph G is 
#    an injective function v->(v1,v2,v3) that satisfies:
#      a.) v1+v2+v3=1 for all v
#      b.) for each edge (x,y) and each vertex z not x or y,
#          there is some k (k=1,2 or 3) such that xk < zk and yk < zk       

    #-------------------------------------------------------------------------
    # LOAD GRAPH
    graph=load_graph(G)
    if graph==0: return 0
    #-------------------------------------------------------------------------
    
    
    #-------------------------------------------------------------------------
    # 1.TRIANGULATION
    graph.triangulate()
    #-------------------------------------------------------------------------
    
    
    #-------------------------------------------------------------------------
    # 2.CANONICAL ORDERING
    graph.initOrder()
    graph.ordering()
    #-------------------------------------------------------------------------
    
    
    #-------------------------------------------------------------------------
    # 3. EDGE LABELLING 
    graph.FPP() # outfaces
    graph.labelling()
    #-------------------------------------------------------------------------
    
    
    #-------------------------------------------------------------------------
    # 4+5. Schnyder
    graph.Schnyder()
    #-------------------------------------------------------------------------
    
    
    #-------------------------------------------------------------------------
    # COORDINATES
    G.xCoord={}
    G.yCoord={}
    n=len(graph.nodes)
    for i in range(0,n):
        G.xCoord[G.vertices[i]]=graph.nodes[i].xsch*float(900/(n-1))+50
        G.yCoord[G.vertices[i]]=1000-(graph.nodes[i].ysch*float(900/(n-1))+50)
    return 1
    #-------------------------------------------------------------------------
    
    #=============================================================================#
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.