smiles_parser.py :  » Development » Frowns » frowns » build » lib » frowns » mdl_parsers » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Development » Frowns 
Frowns » frowns » build » lib » frowns » mdl_parsers » smiles_parser.py
"""
atom := [cnosp]
atom := 'B' | 'C' | 'N' | 'O' | 'F' | 'P' | 'S' | 'Cl' |  'Br' |  'I'
atom := '[' mass? symbol chiral? hcount? charge? ']'

symbol := a lot of names ...

hcount := 'H' \d+
mass := \d+

chiral := '@'  (chiral_repeat | chiral_count | chiral_name)
chiral_repeat := '@'+
chiral_count := \d+
chiral_name := TH[12] | AL[12] | SP[123] | TB(1[0-9]?|20?|[3-9]) |
                OH(1[0-9]?|2[0-9]?|30?|[4-9])

charge := "+" ("+"+ | \d+)?
charge := "-" ("-"+ | \d+)?

bond := [=#/\\:~-]

dot := \.

closure = \d | '%'\d\d?

start -> atom
#start -> dot     # not allowed by Daylight

atom -> atom     # CC
atom -> bond     # C=C
atom -> branch_out  # CCC(C)C   (the 'C(')
atom -> branch_in   # CCC(C)C   (the 'C)')
atom -> dot      # C.C
atom -> closure  # c1ccccc1

bond -> atom     # C=C
bond -> closure  # C1CCCCC-1
bond -> branch_out   # CCC=(O)CC  # but no branch_in

branch_out -> atom   # CC(C)C
branch_in -> atom
branch_out -> bond   # CC(=O)C(C)=O
branch_in -> bond
branch_out -> dot    # C(.C).C
branch_in -> dot
branch_in -> branch_out  # CCC(C)(C)CC
branch_in -> branch_in   # CC(C(C))C

dot -> atom      # C.C
#dot -> dot       # not allowed by Daylight

closure -> atom   # c1ccccc1
closure -> bond   # C1.C1#C
closure -> closure # C12C3C4C1C5C4C3C25
closure -> branch # C1.C1(C)C
closure -> dot    # c1ccccc1.O

"""

import re, string

element_symbols = [
    '*', 'H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne',   # 10
    'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca',     # 20
    'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn',   # 30
    'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr',   # 40
    'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn',  # 50
    'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd',   # 60
    'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb',  # 70
    'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg',   # 80
    'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th',  # 90
    'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm',   # 100
    'Md', 'No', 'Lr', 'Rf', 'Ha', 'Sg', 'Ns', 'Hs', 'Mt',
    ]
# Add in the aromatics
element_symbols.extend(list("cnosp"))

_special_order = "CONSPHcnosp" + string.letters + "*"

def _special_order_cmp(a, b):
    return cmp(_special_order.index(a), _special_order.index(b))

def _make_element_symbols_pattern():
    # Turn the list of element symbols into something that can
    # be used in a regular expression match.  Do some premature
    # optimization so the most common first letters are checked
    # first.
    name_table = {}
    allow_single = {}
    for name in element_symbols:
        if len(name) == 1:
            # Single letter symbol
            name_table.setdefault(name, [])
            allow_single[name] = 1
        else:
            # Two letter symbol
            c1, c2 = name
            name_table.setdefault(c1, []).append(c2)

    # Order so things like "C" are tested early
    keys = name_table.keys()
    keys.sort(_special_order_cmp)

    terms = []
    for key in keys:
        seconds = name_table[key]
        if len(seconds) == 0:
            # Only a single element starts with this letter and
            # the symbol is only one letter long. (eg, "U")
            s = re.escape(key)
        elif len(seconds) == 1:
            assert re.escape(seconds[0]) == seconds[0]
            # Either only one element exists with this letter and
            # the symbol is two letters long (eg, "Xe")
            # -or-
            # Two elements exist, one with a one letter long name
            # and the other with two letters (eg, "O" and "Os")
            s = re.escape(key) + seconds[0]
            if allow_single.get(key):
                s = s + "?"
        else:
            # Several elements start with the same first letter
            s = "%s[%s]" % (re.escape(key), string.join(seconds, ""))
            if allow_single.get(key):
                s = s + "?"
        terms.append(s)
    return string.join(terms, "|")

element_symbols_pattern = _make_element_symbols_pattern()

atom_fields = [
    "raw_atom",
    "open_bracket",
    "weight",
    "element",
    "chiral_count",
    "chiral_named",
    "chiral_simple",
    "hcount",
    "charge_count",
    "charge_simple",
    "error_1",
    "error_2",
    "close_bracket",
    ]

atom = re.compile(r"""
(?P<raw_atom>Cl|Br|[cnospBCNOFPSI]) |  # Don't need brackets
(
  (?P<open_bracket>\[)                 # Start bracket
  (?P<weight>\d+)?                     # Atomic weight (optional)
  (                                    # valid term or error
   (                                   #   valid term
    (?P<element>""" + element_symbols_pattern + r""")  # element
    (                                  # Chirality can be
     (?P<chiral_count>@\d+) |          #   @1 @2 @3 ...
     (?P<chiral_named>                 # or
       @TH[12] |                       #   @TA1 @TA2
       @AL[12] |                       #   @AL1 @AL2
       @SP[123] |                      #   @SP1 @SP2 @SP3
       @TB(1[0-9]?|20?|[3-9]) |        #   @TB{1-20}
       @OH(1[0-9]?|2[0-9]?|30?|[4-9])) | # @OH{1-30}
     (?P<chiral_simple>@+)             # or @@@@@@@...
    )?                                 # and chirality is optional
    (?P<hcount>H\d*)?                  # Optional hydrogen count
    (                                  # Charges can be
     (?P<charge_count>[+-]\d+) |       #   +<number> or -<number>
     (?P<charge_simple>\++|\-+)        #   +++...  or ---
    )?                                 # and are optional
    (?P<error_1>[^\]]+)?               # If there's anything left, it's an error
  ) | (                                # End of parsing stuff in []s, except
    (?P<error_2>[^\]]*)                # If there was an error, we get here
  ))
  (?P<close_bracket>\])                # End bracket
)
""", re.X)

bond_fields = ["bond"]
bond = re.compile(r"(?P<bond>[=#/\\:~-])")

dot_fields = ["dot"]
dot = re.compile(r"(?P<dot>\.)")

closure_fields = ["closure"]
closure = re.compile(r"(?P<closure>\d|%\d\d?)")

branch_in_fields = ["branch_in"]
branch_in = re.compile(r"(?P<branch_in>\))")

branch_out_fields = ["branch_out"]
branch_out = re.compile(r"(?P<branch_out>\()")

# Make from the state name to the regular expession to
# match and the list of field names in the regexp.
# (There's no way to use sre to get that as an ordered list.)
info = {
    "atom": (atom, atom_fields),
    "bond": (bond, bond_fields),
    "dot": (dot, dot_fields),
    "closure": (closure, closure_fields),
    "branch_in": (branch_in, branch_in_fields),
    "branch_out": (branch_out, branch_out_fields),
    }

# Mapping from current state to allowed states
table = {
    "start": ("atom",),
    "atom": ("atom", "bond", "branch_in", "branch_out", "dot", "closure"),
    "bond": ("atom", "closure", "branch_out"),
    "branch_in": ("atom", "bond", "dot", "branch_in", "branch_out"),
    "branch_out": ("atom", "bond", "dot"),
    "dot": ("atom","dot"),
    "closure": ("atom", "bond", "closure", "branch_in", "branch_out", "dot"),
}

# Parse a SMILES string and print the events found
import Generator

class ParseError(Exception):
    pass

def tokenizer(s):
    tokens = []
    expected = table["start"]
    while s:
        for state in expected:
            pat, fields = info[state]
            m = pat.match(s)
            if m:
                break
        else:
            raise ParseError("Could not parse starting with %s" % (repr(s),))
        d = m.groupdict()

        for field in ["error_1", "error_2"]:
            if d.get(field, None) is not None:
                    raise ParseError(
                        "Caught error starting at %s" % (repr(s),)
                        )
        tokens.append((state, d))
        expected = table[state]
        s = s[m.end(0):]

    return tokens

def molecule_generator(tokens, generator=Generator.Generator):
    # quick scans for closure tokens
    # it's easier for us to do the bond checks here
    # than in the molecule generator.  Hopefully this
    # will save us some time.

    mol = generator()
    for state, dict in tokens:
        mol.addState(state, dict)
    return mol.mol()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.