expressions.py :  » Database » PyTables » tables-2.1.2 » tables » numexpr » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Database » PyTables 
PyTables » tables 2.1.2 » tables » numexpr » expressions.py
__all__ = ['E']

import operator
import sys
import threading

import numpy

from tables.numexpr import interpreter

class Expression(object):
    def __init__(self):
        object.__init__(self)

    def __getattr__(self, name):
        if name.startswith('_'):
            return self.__dict__[name]
        else:
            return VariableNode(name, 'float')

E = Expression()

class Context(threading.local):
    initialized = False
    def __init__(self, dict_):
        if self.initialized:
            raise SystemError('__init__ called too many times')
        self.initialized = True
        self.__dict__.update(dict_)
    def get(self, value, default):
        return self.__dict__.get(value, default)
    def get_current_context(self):
        return self.__dict__
    def set_new_context(self, dict_):
        self.__dict__.update(dict_)

# This will be called each time the local object is used in a separate thread
_context = Context({})

def get_optimization():
    return _context.get('optimization', 'none')

# helper functions for creating __magic__ methods
def ophelper(f):
    def func(*args):
        args = list(args)
        for i, x in enumerate(args):
            if isConstant(x):
                args[i] = x = ConstantNode(x)
            if not isinstance(x, ExpressionNode):
                raise TypeError("unsupported object type: %s" % (type(x),))
        return f(*args)
    func.__name__ = f.__name__
    func.__doc__ = f.__doc__
    func.__dict__.update(f.__dict__)
    return func

def allConstantNodes(args):
    "returns True if args are all ConstantNodes."
    for x in args:
        if not isinstance(x, ConstantNode):
            return False
    return True

def isConstant(ex):
    "Returns True if ex is a constant scalar of an allowed type."
    return isinstance(ex, (bool, int, long, float, complex, str))

type_to_kind = {bool: 'bool', int: 'int', long: 'long', float: 'float', complex: 'complex', str: 'str'}
kind_to_type = {'bool': bool, 'int': int, 'long': long, 'float': float, 'complex': complex, 'str': str}
kind_rank = ['bool', 'int', 'long', 'float', 'complex', 'none']

def commonKind(nodes):
    node_kinds = [node.astKind for node in nodes]
    str_count = node_kinds.count('str')
    if 0 < str_count < len(node_kinds):  # some args are strings, but not all
        raise TypeError("strings can only be operated with strings")
    if str_count > 0:  # if there are some, all of them must be
        return 'str'
    n = -1
    for x in nodes:
        n = max(n, kind_rank.index(x.astKind))
    return kind_rank[n]

max_int32 = 2147483647
min_int32 = -max_int32 - 1
def bestConstantType(x):
    if isinstance(x, str):  # ``numpy.string_`` is a subclass of ``str``
        return str
    # ``long`` objects are kept as is to allow the user to force
    # promotion of results by using long constants, e.g. by operating
    # a 32-bit array with a long (64-bit) constant.
    if isinstance(x, (long, numpy.int64)):
        return long
    # Numeric conversion to boolean values is not tried because
    # ``bool(1) == True`` (same for 0 and False), so 0 and 1 would be
    # interpreted as booleans when ``False`` and ``True`` are already
    # supported.
    if isinstance(x, (bool, numpy.bool_)):
        return bool
    # ``long`` is not explicitly needed since ``int`` automatically
    # returns longs when needed (since Python 2.3).
    for converter in int, float, complex:
        try:
            y = converter(x)
        except StandardError, err:
            continue
        if x == y:
            # Constants needing more than 32 bits are always
            # considered ``long``, *regardless of the platform*, so we
            # can clearly tell 32- and 64-bit constants apart.
            if converter is int and not (min_int32 <= x <= max_int32):
                return long
            return converter

def getKind(x):
    converter = bestConstantType(x)
    return type_to_kind[converter]

def binop(opname, reversed=False, kind=None):
    # Getting the named method from self (after reversal) does not
    # always work (e.g. int constants do not have a __lt__ method).
    opfunc = getattr(operator, "__%s__" % opname)
    @ophelper
    def operation(self, other):
        if reversed:
            self, other = other, self
        if allConstantNodes([self, other]):
            return ConstantNode(opfunc(self.value, other.value))
        else:
            return OpNode(opname, (self, other), kind=kind)
    return operation

def func(func, minkind=None, maxkind=None):
    @ophelper
    def function(*args):
        if allConstantNodes(args):
            return ConstantNode(func(*[x.value for x in args]))
        kind = commonKind(args)
        if minkind and kind_rank.index(minkind) > kind_rank.index(kind):
            kind = minkind
        if maxkind and kind_rank.index(maxkind) < kind_rank.index(kind):
            kind = maxkind
        return FuncNode(func.__name__, args, kind)
    return function

@ophelper
def where_func(a, b, c):
    if isinstance(a, ConstantNode):
        raise ValueError("too many dimensions")
    if allConstantNodes([a,b,c]):
        return ConstantNode(numpy.where(a, b, c))
    return FuncNode('where', [a,b,c])

def encode_axis(axis):
    if isinstance(axis, ConstantNode):
        axis = axis.value
    if axis is None:
        axis = interpreter.allaxes
    else:
        if axis < 0:
            axis = interpreter.maxdims - axis
        if axis > 254:
            raise ValueError("cannot encode axis")
    return RawNode(axis)

def sum_func(a, axis=-1):
    axis = encode_axis(axis)
    if isinstance(a, ConstantNode):
        return a
    if isinstance(a, (bool, int, long, float, complex)):
        a = ConstantNode(a)
    return FuncNode('sum', [a, axis], kind=a.astKind)

def prod_func(a, axis=-1):
    axis = encode_axis(axis)
    if isinstance(a, (bool, int, long, float, complex)):
        a = ConstantNode(a)
    if isinstance(a, ConstantNode):
        return a
    return FuncNode('prod', [a, axis], kind=a.astKind)

@ophelper
def div_op(a, b):
    if get_optimization() in ('moderate', 'aggressive'):
        if isinstance(b, ConstantNode) and (a.astKind == b.astKind) and a.astKind in ('float', 'complex'):
            return OpNode('mul', [a, ConstantNode(1./b.value)])
    return OpNode('div', [a,b])

@ophelper
def pow_op(a, b):
    if allConstantNodes([a,b]):
        return ConstantNode(a**b)
    if isinstance(b, ConstantNode):
        x = b.value
        if get_optimization() == 'aggressive':
            RANGE = 50 # Approximate break even point with pow(x,y)
            # Optimize all integral and half integral powers in [-RANGE, RANGE]
            # Note: for complex numbers RANGE could be larger.
            if (int(2*x) == 2*x) and (-RANGE <= abs(x) <= RANGE):
                n = int(abs(x))
                ishalfpower = int(abs(2*x)) % 2
                def multiply(x, y):
                    if x is None: return y
                    return OpNode('mul', [x, y])
                r = None
                p = a
                mask = 1
                while True:
                    if (n & mask):
                        r = multiply(r, p)
                    mask <<= 1
                    if mask > n:
                        break
                    p = OpNode('mul', [p,p])
                if ishalfpower:
                    kind = commonKind([a])
                    if kind in ('int', 'long'): kind = 'float'
                    r = multiply(r, OpNode('sqrt', [a], kind))
                if r is None:
                    r = OpNode('ones_like', [a])
                if x < 0:
                    r = OpNode('div', [ConstantNode(1), r])
                return r
        if get_optimization() in ('moderate', 'aggressive'):
            if x == -1:
                return OpNode('div', [ConstantNode(1),a])
            if x == 0:
                return FuncNode('ones_like', [a])
            if x == 0.5:
                kind = a.astKind
                if kind in ('int', 'long'): kind = 'float'
                return FuncNode('sqrt', [a], kind=kind)
            if x == 1:
                return a
            if x == 2:
                return OpNode('mul', [a,a])
    return OpNode('pow', [a,b])

functions = {
    'copy' : func(numpy.copy),
    'ones_like' : func(numpy.ones_like),
    'sqrt' : func(numpy.sqrt, 'float'),

    'sin' : func(numpy.sin, 'float'),
    'cos' : func(numpy.cos, 'float'),
    'tan' : func(numpy.tan, 'float'),
    'arcsin' : func(numpy.arcsin, 'float'),
    'arccos' : func(numpy.arccos, 'float'),
    'arctan' : func(numpy.arctan, 'float'),

    'sinh' : func(numpy.sinh, 'float'),
    'cosh' : func(numpy.cosh, 'float'),
    'tanh' : func(numpy.tanh, 'float'),
    'arcsinh' : func(numpy.arcsinh, 'float'),
    'arccosh' : func(numpy.arccosh, 'float'),
    'arctanh' : func(numpy.arctanh, 'float'),

    'fmod' : func(numpy.fmod, 'float'),
    'arctan2' : func(numpy.arctan2, 'float'),

    'log' : func(numpy.log, 'float'),
    'log1p' : func(numpy.log1p, 'float'),
    'log10' : func(numpy.log10, 'float'),
    'exp' : func(numpy.exp, 'float'),
    'expm1' : func(numpy.expm1, 'float'),

    'where' : where_func,

    'real' : func(numpy.real, 'float', 'float'),
    'imag' : func(numpy.imag, 'float', 'float'),
    'complex' : func(complex, 'complex'),

    'sum' : sum_func,
    'prod' : prod_func,
    }


class ExpressionNode(object):
    """An object that represents a generic number object.

    This implements the number special methods so that we can keep
    track of how this object has been used.
    """
    astType = 'generic'

    def __init__(self, value=None, kind=None, children=None):
        object.__init__(self)
        self.value = value
        if kind is None:
            kind = 'none'
        self.astKind = kind
        if children is None:
            self.children = ()
        else:
            self.children = tuple(children)

    def get_real(self):
        if self.astType == 'constant':
            return ConstantNode(complex(self.value).real)
        return OpNode('real', (self,), 'float')
    real = property(get_real)

    def get_imag(self):
        if self.astType == 'constant':
            return ConstantNode(complex(self.value).imag)
        return OpNode('imag', (self,), 'float')
    imag = property(get_imag)

    def __str__(self):
        return '%s(%s, %s, %s)' % (self.__class__.__name__, self.value,
                                   self.astKind, self.children)
    def __repr__(self):
        return self.__str__()

    def __neg__(self):
        return OpNode('neg', (self,))
    def __invert__(self):
        return OpNode('invert', (self,))
    def __pos__(self):
        return self

    __add__ = __radd__ = binop('add')
    __sub__ = binop('sub')
    __rsub__ = binop('sub', reversed=True)
    __mul__ = __rmul__ = binop('mul')
    __div__ =  div_op
    __rdiv__ = binop('div', reversed=True)
    __pow__ = pow_op
    __rpow__ = binop('pow', reversed=True)
    __mod__ = binop('mod')
    __rmod__ = binop('mod', reversed=True)

    # boolean operations

    __and__ = binop('and', kind='bool')
    __or__ = binop('or', kind='bool')

    __gt__ = binop('gt', kind='bool')
    __ge__ = binop('ge', kind='bool')
    __eq__ = binop('eq', kind='bool')
    __ne__ = binop('ne', kind='bool')
    __lt__ = binop('gt', reversed=True, kind='bool')
    __le__ = binop('ge', reversed=True, kind='bool')



class LeafNode(ExpressionNode):
    leafNode = True

class VariableNode(LeafNode):
    astType = 'variable'
    def __init__(self, value=None, kind=None, children=None):
        LeafNode.__init__(self, value=value, kind=kind)

class RawNode(object):
    """Used to pass raw integers to interpreter.
    For instance, for selecting what function to use in func1.
    Purposely don't inherit from ExpressionNode, since we don't wan't
    this to be used for anything but being walked.
    """
    astType = 'raw'
    astKind = 'none'
    def __init__(self, value):
        self.value = value
        self.children = ()
    def __str__(self):
        return 'RawNode(%s)' % (self.value,)
    __repr__ = __str__


class ConstantNode(LeafNode):
    astType = 'constant'
    def __init__(self, value=None, children=None):
        kind = getKind(value)
        LeafNode.__init__(self, value=value, kind=kind)
    def __neg__(self):
        return ConstantNode(-self.value)
    def __invert__(self):
        return ConstantNode(~self.value)

class OpNode(ExpressionNode):
    astType = 'op'
    def __init__(self, opcode=None, args=None, kind=None):
        if (kind is None) and (args is not None):
            kind = commonKind(args)
        ExpressionNode.__init__(self, value=opcode, kind=kind, children=args)

class FuncNode(OpNode):
    def __init__(self, opcode=None, args=None, kind=None):
        if (kind is None) and (args is not None):
            kind = commonKind(args)
        OpNode.__init__(self, opcode, args, kind)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.