thanarc.py :  » Business-Application » ThanCad » thancad-0.0.9 » thandr » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Business Application » ThanCad 
ThanCad » thancad 0.0.9 » thandr » thanarc.py
##############################################################################
# ThanCad 0.0.9 "DoesSomething": 2dimensional CAD with raster support for engineers.
# 
# Copyright (c) 2001-2009 Thanasis Stamos,  August 23, 2009
# URL:     http://thancad.sourceforge.net
# e-mail:  cyberthanasis@excite.com
# 
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# 
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details (www.gnu.org/licenses/gpl.html).
# 
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
##############################################################################

"""\
ThanCad 0.0.9 "DoesSomething": 2dimensional CAD with raster support for engineers.

This module defines the circular arc element.
"""

from math import sqrt,atan2,tan,pi,fabs,cos,sin,hypot
from itertools import izip
import bisect
import Tkinter
from p_ggen import prg
from p_gmath import PI2,thanintersect,thanNearx
import thanintall
from thanvar import Canc
from thanelem import ThanElement
from thantrans import T

############################################################################
############################################################################

class ThanArc(ThanElement):
    "A circular arc."

    def thanSet (self, cc, r, theta1, theta2):
        "Sets the attributes of the circle."
        self.setBoundBox([cc[0]-r, cc[1]-r, cc[0]+r, cc[1]+r])
  self.cc = list(cc)
        self.r  = r
  self.theta1 = theta1 % PI2        # radians assumed
  self.theta2 = theta2 % PI2        # radians assumed
  if self.theta2 < self.theta1: self.theta2 += PI2   # Ensure theta2>=theta1
#  self.thanTags = ()                                 # thanTags is initialised in ThanElement

    def thanIsNormal(self):
        "Returns False if the arc is degenerate (either zero radius or identical thetas)."
        if thanNearx(self.cc[0], self.cc[0]+self.r): return False # Degenerate arc                                       # There is no degenerate image
        if thanNearx(self.cc[1], self.cc[1]+self.r): return False # Degenerate arc                                       # There is no degenerate image
        return not thanNearx(self.theta1, self.theta2)       # Degenerate arc

    def thanClone(self):
        "Makes a geometric clone of itself."
  el = ThanArc()
  el.thanSet(self.cc, self.r, self.theta1, self.theta2)
  return el

    def thanRotate(self):
        "Rotates the element within XY-plane with predefined angle and rotation angle."
        self.cc = self.thanRotateXy(self.cc)
        self.theta1 += self.rotPhi
        self.theta2 += self.rotPhi
        self.theta1 %= PI2        # radians assumed
        self.theta2 %= PI2        # radians assumed
        if self.theta2 < self.theta1: self.theta2 += PI2   # Ensure theta2>=theta1
        self.setBoundBox([self.cc[0]-self.r, self.cc[1]-self.r, self.cc[0]+self.r, self.cc[1]+self.r])


    def thanMirror(self):
        "Mirrors the element within XY-plane with predefined point and unit vector."
        ca = list(self.cc)
        ca[0] += self.r*cos(self.theta1)
        ca[1] += self.r*sin(self.theta1)
        cb = list(self.cc)
        cb[0] += self.r*cos(self.theta2)
        cb[1] += self.r*sin(self.theta2)
        self.cc = self.thanMirrorXy(self.cc)
        cb, ca = self.thanMirrorXy(ca), self.thanMirrorXy(cb)
        self.theta1 = atan2(ca[1]-self.cc[1], ca[0]-self.cc[0]) % PI2
        self.theta2 = atan2(cb[1]-self.cc[1], cb[0]-self.cc[0]) % PI2
        if self.theta2 < self.theta1: self.theta2 += PI2   # Ensure theta2>=theta1
        self.setBoundBox([self.cc[0]-self.r, self.cc[1]-self.r, self.cc[0]+self.r, self.cc[1]+self.r])


    def thanScale(self, cs, scale):
        "Scales the element in n-space with defined scale and center of scale."
        self.cc = [cs1+(cc1-cs1)*scale for (cc1,cs1) in izip(self.cc, cs)]
        self.r *= scale
        self.setBoundBox([self.cc[0]-self.r, self.cc[1]-self.r, self.cc[0]+self.r, self.cc[1]+self.r])


    def thanMove(self, dc):
        "Moves the element with defined n-dimensional distance."
        self.cc = [cc1+dd1 for (cc1,dd1) in izip(self.cc, dc)]
        self.setBoundBox([self.cc[0]-self.r, self.cc[1]-self.r, self.cc[0]+self.r, self.cc[1]+self.r])


    def thanOsnap(self, proj, otypes, ccu, eother, cori):
        "Return a point of type otype nearest to point xcu, ycu."
  if "ena" not in otypes: return None            # Object snap is disabled
  ps = []
  if "end" in otypes:
      for thet in self.theta1, self.theta2: self.thanOsnapAdd(ccu, ps, thet, "end")
  if "mid" in otypes:
      thet = ((self.theta2 - self.theta1)*0.5) % PI2
      thet += self.theta1
      self.thanOsnapAdd(ccu, ps, thet, "mid")
  if "nea" in otypes:
            cn, rn, thet = self.thanPntNearest2(ccu)
      if thet != None and rn > self.r:  # If we are getting near from the outside then "nea"
          self.thanOsnapAdd(ccu, ps, thet, "nea")
  if "qua" in otypes:
      for thet in 0, 0.5*pi, pi, 1.5*pi:    # If both "nea" and "cen" are active, "qua" does not have a chance
          if not self.thanThetain(thet)[0]: continue
          self.thanOsnapAdd(ccu, ps, thet, "qua")
        if "cen" in otypes:
            cn, rn, thet = self.thanPntNearest2(ccu)
      if thet != None and rn < self.r:  # If we are getting near from the inside then "cen"
          ps.append((fabs(cn[0]-ccu[0])+fabs(cn[1]-ccu[1]), "cen", self.cc))
        if cori != None and "per" in otypes:
            for cn in self.thanPerpPoints(cori):
                ps.append((fabs(cn[0]-ccu[0])+fabs(cn[1]-ccu[1]), "per", cn))
  if cori != None and "tan" in otypes:
      dx = (self.cc[0] - cori[0])*0.5
      dy = (self.cc[1] - yori[1])*0.5
      r = hypot(dx, dy)
      c = cori[0]+dx, cori[1]+dy
            for cp in thanintersect.thanCirCir(self.cc, self.r, c, r):
                thet = atan2(cp[1]-self.cc[1], cp[0]-self.cc[0]) % PI2
                if not self.thanThetain(th)[0]: continue
          self.thanOsnapAdd(ccu, ps, thet, "tan")
  if eother != None and "int" in otypes:
      ps.extend(thanintall.thanIntsnap(self, eother, ccu, proj))

  if len(ps) > 0: return min(ps)
  return None

    def thanOsnapAdd(self, ccu, ps, thet, snaptyp):
        "Add a new point to osnap points."
        cc = list(self.cc)
        cc[0] += self.r*cos(thet)
        cc[1] += self.r*sin(thet)
        ps.append((fabs(cc[0]-ccu[0])+fabs(cc[1]-ccu[1]), snaptyp, cc))

    def thanPntNearest(self, ccu):
        "Finds the nearest point of this arc to a point."
        return self.thanPntNearest2(ccu)[0]

    def thanPntNearest2(self, ccu):
        "Finds the nearest point of this arc to a point and its angle."
  a = ccu[0]-self.cc[0], ccu[1]-self.cc[1]
  aa = hypot(a[0], a[1])
  if thanNearx(aa, 0.0): thet = 0.0
  else:                  thet = atan2(a[1], a[0]) % PI2
        in_, _ = self.thanThetain(thet)
  if not in_: return None, None, None
  c = list(self.cc)
  c[0] += self.r*cos(thet)
  c[1] += self.r*sin(thet)
  return c, aa, thet


    def thanPerpPoints(self, ccu):
        "Finds the perpendicular points from ccu to the arc."
        a = ccu[0]-self.cc[0], ccu[1]-self.cc[1]
        aa = hypot(a[0], a[1])
        if thanNearx(aa, 0.0): thet = 0.0
        else:                  thet = atan2(a[1], a[0]) % PI2
        ps = []
        in_, thet1 = self.thanThetain(thet)
        if in_:
            c = list(self.cc)
            c[0] += self.r*cos(thet1)
            c[1] += self.r*sin(thet1)
            ps.append(c)
        thet += pi
        in_, thet1 = self.thanThetain(thet)
        if in_:
            c = list(self.cc)
            c[0] += self.r*cos(thet1)
            c[1] += self.r*sin(thet1)
            ps.append(c)
        return ps


    def thanLength(self):
        "Returns the length of the arc."
        return pi*(self.theta2-self.theta1)


    def thanArea(self):
        "Returns the area of the arc."
  dth = self.theta2-self.theta1
  assert dth >= 0.0
  if dth <= pi:
      asec = dth*0.5*self.r**2
      atri = self.r*cos(dth*0.5)*self.r*sin(dth*0.5)
      return asec-atri
  else:
      dth = 2*pi - dth
      asec = dth*0.5*self.r**2
      atri = self.r*cos(dth*0.5)*self.r*sin(dth*0.5)
      return pi*self.r**2 - (asec - atri)

    def thanTrim(self, ct, cnear):
        "Breaks the line into multiple segments and deletes the segment nearest to cnear."
        cp = []
        for c in ct:
            cn, i, t = self.thanPntNearest2(c)
            cp.append((t, i, c))
            assert cn != None, "It should have been checked (that ct are indeed near the arc)!"
        cp.sort()
        cn, i, t = self.thanPntNearest2(cnear)
        cpnear = t, i, cn
        assert cpnear[2] != None, "It should have been checked (that cnear are indeed near the arc)!"
        i = bisect.bisect_right(cp, cpnear)
        if i == 0:
            c1 = list(self.cc)
            c1[0] += self.r*cos(self.theta1)
            c1[1] += self.r*sin(self.theta1)
            return self.thanBreak(c1, cp[0][2])         # User selected the segment before the first intesection (ct)
        elif i == len(cp):
            c1 = list(self.cc)
            c1[0] += self.r*cos(self.theta2)
            c1[1] += self.r*sin(self.theta2)
            return self.thanBreak(cp[-1][2], c1)        # User selected the segment after the last intesection (ct)
        else:
            return self.thanBreak(cp[i-1][2], cp[i][2]) # User selected the segment between i-1 and i intesections (ct)

    def thanBreak(self, c1=None, c2=None):
        "Breaks an arc to 2 arcs."
  if c1 == None: return True                       # Break IS implemented
  cp1, r1, thet1 = self.thanPntNearest2(c1)
  assert cp1 != None, "pntNearest should succeed (as in thancommod.__getNearPnt()"

  cp2, r2, thet2 = self.thanPntNearest2(c2)
  assert cp2 != None, "pntNearest should succeed (as in thancommod.__getNearPnt()"
        if thet2 < thet1: thet2, thet1 = thet1, thet2    # Ensure thet1 < thet2

  e1 = ThanArc()
        e1.thanSet(self.cc, self.r, self.theta1, thet1)
        if not e1.thanIsNormal(): e1 = None
  e2 = ThanArc()
        e2.thanSet(self.cc, self.r, thet2, self.theta2)
        if not e2.thanIsNormal(): e2 = None
  return e1, e2

    def thanThetain(self, th):
        "Finds if th is betweem self.theta1 and self.theta2."
  if self.theta1 <= th      <= self.theta2: return True, th
  if self.theta1 <= th+PI2  <= self.theta2: return True, th+PI2
  if thanNearx(0.0, self.r*tan(self.theta1-th)): return True, self.theta1
  if thanNearx(0.0, self.r*tan(self.theta2-th)): return True, self.theta2
  return False, th

    def thanTkGet(self, proj):
        "Gets the attributes of the arc interactively from a window."
        than = proj[2].than
        g2l = than.ct.global2Local
        cc = proj[2].thanGudGetPoint(T["Center: "])
        if cc == Canc: return Canc                # Arc cancelled
        r = proj[2].thanGudGetCircle(cc, T["Radius: "])
        if r == Canc: return Canc                 # Arc cancelled
        temp = than.dc.create_oval(g2l(cc[0]-r, cc[1]-r), g2l(cc[0]+r, cc[1]+r),
      outline="blue", tags=("e0",), outlinestipple="gray50")

        theta1 = proj[2].thanGudGetPolar(cc, r, T["First point angle: "])
        than.dc.delete("e0")
        if theta1 == Canc: return Canc            # Arc cancelled
        than.dc.create_line(g2l(cc[0], cc[1]), g2l(cc[0]+r*cos(theta1), cc[1]+r*sin(theta1)), fill="blue", tags=("e0",))

        theta2 = proj[2].thanGudGetArc(cc, r, theta1, T["Last point angle: "])
        than.dc.delete("e0")
        if theta2 == Canc: return Canc            # Arc cancelled
        self.thanSet(cc, r, theta1, theta2)
  return True                               # Arc OK

    def thanTkDraw(self, than):
        "Draws the arc to a Tk Canvas."
        xc, yc = than.ct.global2Local(self.cc[0], self.cc[1])
        r, temp = than.ct.global2LocalRel(self.r, self.r)
        theta1 = self.theta1 * 180.0/pi
        theta2 = self.theta2 * 180.0/pi
        dth = (theta2-theta1) % 360.0
        temp = than.dc.create_arc(xc-r, yc-r, xc+r, yc+r, start=theta1, extent=dth,
            style=Tkinter.ARC, outline=than.outline, fill=than.fill, tags=self.thanTags)


    def thanTkHiwin(self, than):
        "Highlights with a (small) window very small elements so that they become visible."
        ca = list(cc)
        ca[0] += self.r*cos(self.theta1)
        ca[1] += self.r*sin(self.theta1),
        self.thanTkHiwinDo(than, self.thanLength(), ca)


    def thanExpDxf(self, fDxf):
        "Exports the arc to dxf file."
        fDxf.thanDxfPlotArc3(self.cc[0], self.cc[1], self.cc[2], self.r,
            self.theta1/pi*180.0, self.theta2/pi*180.0)


    def thanExpPil(self, than):
        "Exports the arc to a PIL raster image."
        x1, y1 = than.ct.global2Locali(self.cc[0]-self.r, self.cc[1]+self.r)  # PIL needs left,upper and ..
        x2, y2 = than.ct.global2Locali(self.cc[0]+self.r, self.cc[1]-self.r)  # ..right,lower
        t2 = -int(self.theta1/pi*180.0+0.5)
  t1 = -int(self.theta2/pi*180.0+0.5)
  for i in xrange(*than.widtharc):
   than.dc.arc((x1-i, y1-i, x2+i, y2+i), t1, t2, fill=than.outline)

    def thanList(self, than):
        "Shows information about the arc element."
  than.writecom("Element: ARC")
  than.write("    Layer: % s\n" % than.laypath)
  than.write("Length: %s    Area: %s\n" % (than.strdis(self.thanLength()), than.strdis(self.thanArea())))
  t = ("Center: %s" % than.strcoo(self.cc),
       "Radius: %s" % than.strdis(self.r),
       "Span from: %s    to: %s\n"% (than.strang(self.theta1), than.strang(self.theta2)),
      )
  than.write("\n".join(t))


if __name__ == "__main__":
    prg(__doc__)
    c = ThanArc()
    c.thanSet([10.0, 20.0, -11.0], 3.0, 0.0, pi*0.5)
    prg("arc=%s" % (c,))
    prg("degenerate=%s" % bool(not c.thanIsNormal()))
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.