Task.py :  » Build » Waf » waf-1.5.17 » wafadmin » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Build » Waf 
Waf » waf 1.5.17 » wafadmin » Task.py
#!/usr/bin/env python
# encoding: utf-8
# Thomas Nagy, 2005-2008 (ita)

"""
Running tasks in parallel is a simple problem, but in practice it is more complicated:
* dependencies discovered during the build (dynamic task creation)
* dependencies discovered after files are compiled
* the amount of tasks and dependencies (graph size) can be huge

This is why the dependency management is split on three different levels:
1. groups of tasks that run all after another group of tasks
2. groups of tasks that can be run in parallel
3. tasks that can run in parallel, but with possible unknown ad-hoc dependencies

The point #1 represents a strict sequential order between groups of tasks, for example a compiler is produced
and used to compile the rest, whereas #2 and #3 represent partial order constraints where #2 applies to the kind of task
and #3 applies to the task instances.

#1 is held by the task manager: ordered list of TaskGroups (see bld.add_group)
#2 is held by the task groups and the task types: precedence after/before (topological sort),
   and the constraints extracted from file extensions
#3 is held by the tasks individually (attribute run_after),
   and the scheduler (Runner.py) use Task::runnable_status to reorder the tasks

--

To try, use something like this in your code:
import Constants, Task
Task.algotype = Constants.MAXPARALLEL

--

There are two concepts with the tasks (individual units of change):
* dependency (if 1 is recompiled, recompile 2)
* order (run 2 after 1)

example 1: if t1 depends on t2 and t2 depends on t3 it is not necessary to make t1 depend on t3 (dependency is transitive)
example 2: if t1 depends on a node produced by t2, it is not immediately obvious that t1 must run after t2 (order is not obvious)

The role of the Task Manager is to give the tasks in order (groups of task that may be run in parallel one after the other)

"""

import os, shutil, sys, re, random, datetime, tempfile, shlex
from Utils import md5
import Build, Runner, Utils, Node, Logs, Options
from Logs import debug,warn,error
from Constants import *

algotype = NORMAL
#algotype = JOBCONTROL
#algotype = MAXPARALLEL

COMPILE_TEMPLATE_SHELL = '''
def f(task):
  env = task.env
  wd = getattr(task, 'cwd', None)
  p = env.get_flat
  cmd = \'\'\' %s \'\'\' % s
  return task.exec_command(cmd, cwd=wd)
'''

COMPILE_TEMPLATE_NOSHELL = '''
def f(task):
  env = task.env
  wd = getattr(task, 'cwd', None)
  def to_list(xx):
    if isinstance(xx, str): return [xx]
    return xx
  lst = []
  %s
  lst = [x for x in lst if x]
  return task.exec_command(lst, cwd=wd)
'''


"""
Enable different kind of dependency algorithms:
1 make groups: first compile all cpps and then compile all links (NORMAL)
2 parallelize all (each link task run after its dependencies) (MAXPARALLEL)
3 like 1 but provide additional constraints for the parallelization (MAXJOBS)

In theory 1. will be faster than 2 for waf, but might be slower for builds
The scheme 2 will not allow for running tasks one by one so it can cause disk thrashing on huge builds
"""

file_deps = Utils.nada
"""
Additional dependency pre-check may be added by replacing the function file_deps.
e.g. extract_outputs, extract_deps below.
"""

class TaskManager(object):
  """The manager is attached to the build object, it holds a list of TaskGroup"""
  def __init__(self):
    self.groups = []
    self.tasks_done = []
    self.current_group = 0
    self.groups_names = {}

  def group_name(self, g):
    """name for the group g (utility)"""
    if not isinstance(g, TaskGroup):
      g = self.groups[g]
    for x in self.groups_names:
      if id(self.groups_names[x]) == id(g):
        return x
    return ''

  def group_idx(self, tg):
    """group the task generator tg is in"""
    se = id(tg)
    for i in range(len(self.groups)):
      g = self.groups[i]
      for t in g.tasks_gen:
        if id(t) == se:
          return i
    return None

  def get_next_set(self):
    """return the next set of tasks to execute
    the first parameter is the maximum amount of parallelization that may occur"""
    ret = None
    while not ret and self.current_group < len(self.groups):
      ret = self.groups[self.current_group].get_next_set()
      if ret: return ret
      else:
        self.groups[self.current_group].process_install()
        self.current_group += 1
    return (None, None)

  def add_group(self, name=None, set=True):
    #if self.groups and not self.groups[0].tasks:
    #  error('add_group: an empty group is already present')
    g = TaskGroup()

    if name and name in self.groups_names:
      error('add_group: name %s already present' % name)
    self.groups_names[name] = g
    self.groups.append(g)
    if set:
      self.current_group = len(self.groups) - 1

  def set_group(self, idx):
    if isinstance(idx, str):
      g = self.groups_names[idx]
      for x in xrange(len(self.groups)):
        if id(g) == id(self.groups[x]):
          self.current_group = x
    else:
      self.current_group = idx

  def add_task_gen(self, tgen):
    if not self.groups: self.add_group()
    self.groups[self.current_group].tasks_gen.append(tgen)

  def add_task(self, task):
    if not self.groups: self.add_group()
    self.groups[self.current_group].tasks.append(task)

  def total(self):
    total = 0
    if not self.groups: return 0
    for group in self.groups:
      total += len(group.tasks)
    return total

  def add_finished(self, tsk):
    self.tasks_done.append(tsk)
    bld = tsk.generator.bld
    if bld.is_install:
      f = None
      if 'install' in tsk.__dict__:
        f = tsk.__dict__['install']
        # install=0 to prevent installation
        if f: f(tsk)
      else:
        tsk.install()

class TaskGroup(object):
  "the compilation of one group does not begin until the previous group has finished (in the manager)"
  def __init__(self):
    self.tasks = [] # this list will be consumed
    self.tasks_gen = []

    self.cstr_groups = Utils.DefaultDict(list) # tasks having equivalent constraints
    self.cstr_order = Utils.DefaultDict(set) # partial order between the cstr groups
    self.temp_tasks = [] # tasks put on hold
    self.ready = 0
    self.post_funs = []

  def reset(self):
    "clears the state of the object (put back the tasks into self.tasks)"
    for x in self.cstr_groups:
      self.tasks += self.cstr_groups[x]
    self.tasks = self.temp_tasks + self.tasks
    self.temp_tasks = []
    self.cstr_groups = Utils.DefaultDict(list)
    self.cstr_order = Utils.DefaultDict(set)
    self.ready = 0

  def process_install(self):
    for (f, k, kw) in self.post_funs:
      f(*k, **kw)

  def prepare(self):
    "prepare the scheduling"
    self.ready = 1
    file_deps(self.tasks)
    self.make_cstr_groups()
    self.extract_constraints()

  def get_next_set(self):
    "next list of tasks to execute using max job settings, returns (maxjobs, task_list)"
    global algotype
    if algotype == NORMAL:
      tasks = self.tasks_in_parallel()
      maxj = MAXJOBS
    elif algotype == JOBCONTROL:
      (maxj, tasks) = self.tasks_by_max_jobs()
    elif algotype == MAXPARALLEL:
      tasks = self.tasks_with_inner_constraints()
      maxj = MAXJOBS
    else:
      raise Utils.WafError("unknown algorithm type %s" % (algotype))

    if not tasks: return ()
    return (maxj, tasks)

  def make_cstr_groups(self):
    "unite the tasks that have similar constraints"
    self.cstr_groups = Utils.DefaultDict(list)
    for x in self.tasks:
      h = x.hash_constraints()
      self.cstr_groups[h].append(x)

  def set_order(self, a, b):
    self.cstr_order[a].add(b)

  def compare_exts(self, t1, t2):
    "extension production"
    x = "ext_in"
    y = "ext_out"
    in_ = t1.attr(x, ())
    out_ = t2.attr(y, ())
    for k in in_:
      if k in out_:
        return -1
    in_ = t2.attr(x, ())
    out_ = t1.attr(y, ())
    for k in in_:
      if k in out_:
        return 1
    return 0

  def compare_partial(self, t1, t2):
    "partial relations after/before"
    m = "after"
    n = "before"
    name = t2.__class__.__name__
    if name in Utils.to_list(t1.attr(m, ())): return -1
    elif name in Utils.to_list(t1.attr(n, ())): return 1
    name = t1.__class__.__name__
    if name in Utils.to_list(t2.attr(m, ())): return 1
    elif name in Utils.to_list(t2.attr(n, ())): return -1
    return 0

  def extract_constraints(self):
    "extract the parallelization constraints from the tasks with different constraints"
    keys = self.cstr_groups.keys()
    max = len(keys)
    # hopefully the length of this list is short
    for i in xrange(max):
      t1 = self.cstr_groups[keys[i]][0]
      for j in xrange(i + 1, max):
        t2 = self.cstr_groups[keys[j]][0]

        # add the constraints based on the comparisons
        val = (self.compare_exts(t1, t2)
          or self.compare_partial(t1, t2)
          )
        if val > 0:
          self.set_order(keys[i], keys[j])
        elif val < 0:
          self.set_order(keys[j], keys[i])

  def tasks_in_parallel(self):
    "(NORMAL) next list of tasks that may be executed in parallel"

    if not self.ready: self.prepare()

    keys = self.cstr_groups.keys()

    unconnected = []
    remainder = []

    for u in keys:
      for k in self.cstr_order.values():
        if u in k:
          remainder.append(u)
          break
      else:
        unconnected.append(u)

    toreturn = []
    for y in unconnected:
      toreturn.extend(self.cstr_groups[y])

    # remove stuff only after
    for y in unconnected:
        try: self.cstr_order.__delitem__(y)
        except KeyError: pass
        self.cstr_groups.__delitem__(y)

    if not toreturn and remainder:
      raise Utils.WafError("circular order constraint detected %r" % remainder)

    return toreturn

  def tasks_by_max_jobs(self):
    "(JOBCONTROL) returns the tasks that can run in parallel with the max amount of jobs"
    if not self.ready: self.prepare()
    if not self.temp_tasks: self.temp_tasks = self.tasks_in_parallel()
    if not self.temp_tasks: return (None, None)

    maxjobs = MAXJOBS
    ret = []
    remaining = []
    for t in self.temp_tasks:
      m = getattr(t, "maxjobs", getattr(self.__class__, "maxjobs", MAXJOBS))
      if m > maxjobs:
        remaining.append(t)
      elif m < maxjobs:
        remaining += ret
        ret = [t]
        maxjobs = m
      else:
        ret.append(t)
    self.temp_tasks = remaining
    return (maxjobs, ret)

  def tasks_with_inner_constraints(self):
    """(MAXPARALLEL) returns all tasks in this group, but add the constraints on each task instance
    as an optimization, it might be desirable to discard the tasks which do not have to run"""
    if not self.ready: self.prepare()

    if getattr(self, "done", None): return None

    for p in self.cstr_order:
      for v in self.cstr_order[p]:
        for m in self.cstr_groups[p]:
          for n in self.cstr_groups[v]:
            n.set_run_after(m)
    self.cstr_order = Utils.DefaultDict(set)
    self.cstr_groups = Utils.DefaultDict(list)
    self.done = 1
    return self.tasks[:] # make a copy

class store_task_type(type):
  "store the task types that have a name ending in _task into a map (remember the existing task types)"
  def __init__(cls, name, bases, dict):
    super(store_task_type, cls).__init__(name, bases, dict)
    name = cls.__name__

    if name.endswith('_task'):
      name = name.replace('_task', '')
    if name != 'TaskBase':
      TaskBase.classes[name] = cls

class TaskBase(object):
  """Base class for all Waf tasks

  The most important methods are (by usual order of call):
  1 runnable_status: ask the task if it should be run, skipped, or if we have to ask later
  2 __str__: string to display to the user
  3 run: execute the task
  4 post_run: after the task is run, update the cache about the task

  This class should be seen as an interface, it provides the very minimum necessary for the scheduler
  so it does not do much.

  For illustration purposes, TaskBase instances try to execute self.fun (if provided)
  """

  __metaclass__ = store_task_type

  color = "GREEN"
  maxjobs = MAXJOBS
  classes = {}
  stat = None

  def __init__(self, *k, **kw):
    self.hasrun = NOT_RUN

    try:
      self.generator = kw['generator']
    except KeyError:
      self.generator = self
      self.bld = Build.bld

    if kw.get('normal', 1):
      self.generator.bld.task_manager.add_task(self)

  def __repr__(self):
    "used for debugging"
    return '\n\t{task: %s %s}' % (self.__class__.__name__, str(getattr(self, "fun", "")))

  def __str__(self):
    "string to display to the user"
    if hasattr(self, 'fun'):
      return 'executing: %s\n' % self.fun.__name__
    return self.__class__.__name__ + '\n'

  def exec_command(self, *k, **kw):
    "use this for executing commands from tasks"
    # TODO in waf 1.6, eliminate bld.exec_command, and move the cwd processing to here
    if self.env['env']:
      kw['env'] = self.env['env']
    return self.generator.bld.exec_command(*k, **kw)

  def runnable_status(self):
    "RUN_ME SKIP_ME or ASK_LATER"
    return RUN_ME

  def can_retrieve_cache(self):
    return False

  def call_run(self):
    if self.can_retrieve_cache():
      return 0
    return self.run()

  def run(self):
    "called if the task must run"
    if hasattr(self, 'fun'):
      return self.fun(self)
    return 0

  def post_run(self):
    "update the dependency tree (node stats)"
    pass

  def display(self):
    "print either the description (using __str__) or the progress bar or the ide output"
    col1 = Logs.colors(self.color)
    col2 = Logs.colors.NORMAL

    if Options.options.progress_bar == 1:
      return self.generator.bld.progress_line(self.position[0], self.position[1], col1, col2)

    if Options.options.progress_bar == 2:
      ela = Utils.get_elapsed_time(self.generator.bld.ini)
      try:
        ins  = ','.join([n.name for n in self.inputs])
      except AttributeError:
        ins = ''
      try:
        outs = ','.join([n.name for n in self.outputs])
      except AttributeError:
        outs = ''
      return '|Total %s|Current %s|Inputs %s|Outputs %s|Time %s|\n' % (self.position[1], self.position[0], ins, outs, ela)

    total = self.position[1]
    n = len(str(total))
    fs = '[%%%dd/%%%dd] %%s%%s%%s' % (n, n)
    return fs % (self.position[0], self.position[1], col1, str(self), col2)

  def attr(self, att, default=None):
    "retrieve an attribute from the instance or from the class (microoptimization here)"
    ret = getattr(self, att, self)
    if ret is self: return getattr(self.__class__, att, default)
    return ret

  def hash_constraints(self):
    "identify a task type for all the constraints relevant for the scheduler: precedence, file production"
    a = self.attr
    sum = hash((self.__class__.__name__,
      str(a('before', '')),
      str(a('after', '')),
      str(a('ext_in', '')),
      str(a('ext_out', '')),
      self.__class__.maxjobs))
    return sum

  def format_error(self):
    "error message to display to the user (when a build fails)"
    if getattr(self, "err_msg", None):
      return self.err_msg
    elif self.hasrun == CRASHED:
      try:
        return " -> task failed (err #%d): %r" % (self.err_code, self)
      except AttributeError:
        return " -> task failed: %r" % self
    elif self.hasrun == MISSING:
      return " -> missing files: %r" % self
    else:
      return ''

  def install(self):
    """
    installation is performed by looking at the task attributes:
    * install_path: installation path like "${PREFIX}/bin"
    * filename: install the first node in the outputs as a file with a particular name, be certain to give os.sep
    * chmod: permissions
    """
    bld = self.generator.bld
    d = self.attr('install')

    if self.attr('install_path'):
      lst = [a.relpath_gen(bld.srcnode) for a in self.outputs]
      perm = self.attr('chmod', O644)
      if self.attr('src'):
        # if src is given, install the sources too
        lst += [a.relpath_gen(bld.srcnode) for a in self.inputs]
      if self.attr('filename'):
        dir = self.install_path.rstrip(os.sep) + os.sep + self.attr('filename')
        bld.install_as(dir, lst[0], self.env, perm)
      else:
        bld.install_files(self.install_path, lst, self.env, perm)

class Task(TaskBase):
  """The parent class is quite limited, in this version:
  * file system interaction: input and output nodes
  * persistence: do not re-execute tasks that have already run
  * caching: same files can be saved and retrieved from a cache directory
  * dependencies:
    implicit, like .c files depending on .h files
    explicit, like the input nodes or the dep_nodes
    environment variables, like the CXXFLAGS in self.env
  """
  vars = []
  def __init__(self, env, **kw):
    TaskBase.__init__(self, **kw)
    self.env = env

    # inputs and outputs are nodes
    # use setters when possible
    self.inputs  = []
    self.outputs = []

    self.deps_nodes = []
    self.run_after = []

    # Additionally, you may define the following
    #self.dep_vars  = 'PREFIX DATADIR'

  def __str__(self):
    "string to display to the user"
    env = self.env
    src_str = ' '.join([a.nice_path(env) for a in self.inputs])
    tgt_str = ' '.join([a.nice_path(env) for a in self.outputs])
    if self.outputs: sep = ' -> '
    else: sep = ''
    return '%s: %s%s%s\n' % (self.__class__.__name__.replace('_task', ''), src_str, sep, tgt_str)

  def __repr__(self):
    return "".join(['\n\t{task: ', self.__class__.__name__, " ", ",".join([x.name for x in self.inputs]), " -> ", ",".join([x.name for x in self.outputs]), '}'])

  def unique_id(self):
    "get a unique id: hash the node paths, the variant, the class, the function"
    try:
      return self.uid
    except AttributeError:
      "this is not a real hot zone, but we want to avoid surprizes here"
      m = md5()
      up = m.update
      up(self.__class__.__name__)
      up(self.env.variant())
      p = None
      for x in self.inputs + self.outputs:
        if p != x.parent.id:
          p = x.parent.id
          up(x.parent.abspath())
        up(x.name)
      self.uid = m.digest()
      return self.uid

  def set_inputs(self, inp):
    if isinstance(inp, list): self.inputs += inp
    else: self.inputs.append(inp)

  def set_outputs(self, out):
    if isinstance(out, list): self.outputs += out
    else: self.outputs.append(out)

  def set_run_after(self, task):
    "set (scheduler) order on another task"
    # TODO: handle list or object
    assert isinstance(task, TaskBase)
    self.run_after.append(task)

  def add_file_dependency(self, filename):
    "TODO user-provided file dependencies"
    node = self.generator.bld.path.find_resource(filename)
    self.deps_nodes.append(node)

  def signature(self):
    # compute the result one time, and suppose the scan_signature will give the good result
    try: return self.cache_sig[0]
    except AttributeError: pass

    self.m = md5()

    # explicit deps
    exp_sig = self.sig_explicit_deps()

    # env vars
    var_sig = self.sig_vars()

    # implicit deps

    imp_sig = SIG_NIL
    if self.scan:
      try:
        imp_sig = self.sig_implicit_deps()
      except ValueError:
        return self.signature()

    # we now have the signature (first element) and the details (for debugging)
    ret = self.m.digest()
    self.cache_sig = (ret, exp_sig, imp_sig, var_sig)
    return ret

  def runnable_status(self):
    "SKIP_ME RUN_ME or ASK_LATER"
    #return 0 # benchmarking

    if self.inputs and (not self.outputs):
      if not getattr(self.__class__, 'quiet', None):
        warn("invalid task (no inputs OR outputs): override in a Task subclass or set the attribute 'quiet' %r" % self)

    for t in self.run_after:
      if not t.hasrun:
        return ASK_LATER

    env = self.env
    bld = self.generator.bld

    # first compute the signature
    new_sig = self.signature()

    # compare the signature to a signature computed previously
    key = self.unique_id()
    try:
      prev_sig = bld.task_sigs[key][0]
    except KeyError:
      debug("task: task %r must run as it was never run before or the task code changed", self)
      return RUN_ME

    # compare the signatures of the outputs
    for node in self.outputs:
      variant = node.variant(env)
      try:
        if bld.node_sigs[variant][node.id] != new_sig:
          return RUN_ME
      except KeyError:
        debug("task: task %r must run as the output nodes do not exist", self)
        return RUN_ME

    # debug if asked to
    if Logs.verbose: self.debug_why(bld.task_sigs[key])

    if new_sig != prev_sig:
      return RUN_ME
    return SKIP_ME

  def post_run(self):
    "called after a successful task run"
    bld = self.generator.bld
    env = self.env
    sig = self.signature()
    ssig = sig.encode('hex')

    variant = env.variant()
    for node in self.outputs:
      # check if the node exists ..
      try:
        os.stat(node.abspath(env))
      except OSError:
        self.hasrun = MISSING
        self.err_msg = '-> missing file: %r' % node.abspath(env)
        raise Utils.WafError

      # important, store the signature for the next run
      bld.node_sigs[variant][node.id] = sig
    bld.task_sigs[self.unique_id()] = self.cache_sig

    # file caching, if possible
    # try to avoid data corruption as much as possible
    if not Options.cache_global or Options.options.nocache or not self.outputs:
      return None

    if getattr(self, 'cached', None):
      return None

    dname = os.path.join(Options.cache_global, ssig)
    tmpdir = tempfile.mkdtemp(prefix=Options.cache_global)

    try:
      shutil.rmtree(dname)
    except:
      pass

    try:
      for node in self.outputs:
        variant = node.variant(env)
        dest = os.path.join(tmpdir, node.name)
        shutil.copy2(node.abspath(env), dest)
    except (OSError, IOError):
      try:
        shutil.rmtree(tmpdir)
      except:
        pass
    else:
      try:
        os.rename(tmpdir, dname)
      except OSError:
        try:
          shutil.rmtree(tmpdir)
        except:
          pass
      else:
        try:
          os.chmod(dname, O755)
        except:
          pass

  def can_retrieve_cache(self):
    """
    Retrieve build nodes from the cache
    update the file timestamps to help cleaning the least used entries from the cache
    additionally, set an attribute 'cached' to avoid re-creating the same cache files

    suppose there are files in cache/dir1/file1 and cache/dir2/file2
    first, read the timestamp of dir1
    then try to copy the files
    then look at the timestamp again, if it has changed, the data may have been corrupt (cache update by another process)
    should an exception occur, ignore the data
    """
    if not Options.cache_global or Options.options.nocache or not self.outputs:
      return None

    env = self.env
    sig = self.signature()
    ssig = sig.encode('hex')

    # first try to access the cache folder for the task
    dname = os.path.join(Options.cache_global, ssig)
    try:
      t1 = os.stat(dname).st_mtime
    except OSError:
      return None

    for node in self.outputs:
      variant = node.variant(env)

      orig = os.path.join(dname, node.name)
      try:
        shutil.copy2(orig, node.abspath(env))
        # mark the cache file as used recently (modified)
        os.utime(orig, None)
      except (OSError, IOError):
        debug('task: failed retrieving file')
        return None

    # is it the same folder?
    try:
      t2 = os.stat(dname).st_mtime
    except OSError:
      return None

    if t1 != t2:
      return None

    for node in self.outputs:
      self.generator.bld.node_sigs[variant][node.id] = sig
      if Options.options.progress_bar < 1:
        self.generator.bld.printout('restoring from cache %r\n' % node.bldpath(env))

    self.cached = True
    return 1

  def debug_why(self, old_sigs):
    "explains why a task is run"

    new_sigs = self.cache_sig
    def v(x):
      return x.encode('hex')

    debug("Task %r", self)
    msgs = ['Task must run', '* Source file or manual dependency', '* Implicit dependency', '* Environment variable']
    tmp = 'task: -> %s: %s %s'
    for x in xrange(len(msgs)):
      if (new_sigs[x] != old_sigs[x]):
        debug(tmp, msgs[x], v(old_sigs[x]), v(new_sigs[x]))

  def sig_explicit_deps(self):
    bld = self.generator.bld
    up = self.m.update

    # the inputs
    for x in self.inputs + getattr(self, 'dep_nodes', []):
      if not x.parent.id in bld.cache_scanned_folders:
        bld.rescan(x.parent)

      variant = x.variant(self.env)
      try:
        up(bld.node_sigs[variant][x.id])
      except KeyError:
        raise Utils.WafError('Missing node signature for %r (required by %r)' % (x, self))

    # manual dependencies, they can slow down the builds
    if bld.deps_man:
      additional_deps = bld.deps_man
      for x in self.inputs + self.outputs:
        try:
          d = additional_deps[x.id]
        except KeyError:
          continue

        for v in d:
          if isinstance(v, Node.Node):
            bld.rescan(v.parent)
            variant = v.variant(self.env)
            try:
              v = bld.node_sigs[variant][v.id]
            except KeyError:
              raise Utils.WafError('Missing node signature for %r (required by %r)' % (v, self))
          elif hasattr(v, '__call__'):
            v = v() # dependency is a function, call it
          up(v)

    for x in self.deps_nodes:
      v = bld.node_sigs[x.variant(self.env)][x.id]
      up(v)

    return self.m.digest()

  def sig_vars(self):
    bld = self.generator.bld
    env = self.env

    # dependencies on the environment vars
    act_sig = bld.hash_env_vars(env, self.__class__.vars)
    self.m.update(act_sig)

    # additional variable dependencies, if provided
    dep_vars = getattr(self, 'dep_vars', None)
    if dep_vars:
      self.m.update(bld.hash_env_vars(env, dep_vars))

    return self.m.digest()

  #def scan(self, node):
  #  """this method returns a tuple containing:
  #  * a list of nodes corresponding to real files
  #  * a list of names for files not found in path_lst
  #  the input parameters may have more parameters that the ones used below
  #  """
  #  return ((), ())
  scan = None

  # compute the signature, recompute it if there is no match in the cache
  def sig_implicit_deps(self):
    "the signature obtained may not be the one if the files have changed, we do it in two steps"

    bld = self.generator.bld

    # get the task signatures from previous runs
    key = self.unique_id()
    prev_sigs = bld.task_sigs.get(key, ())
    if prev_sigs:
      try:
        # for issue #379
        if prev_sigs[2] == self.compute_sig_implicit_deps():
          return prev_sigs[2]
      except (KeyError, OSError):
        pass
      del bld.task_sigs[key]
      raise ValueError('rescan')

    # no previous run or the signature of the dependencies has changed, rescan the dependencies
    (nodes, names) = self.scan()
    if Logs.verbose:
      debug('deps: scanner for %s returned %s %s', str(self), str(nodes), str(names))

    # store the dependencies in the cache
    bld.node_deps[key] = nodes
    bld.raw_deps[key] = names

    # recompute the signature and return it
    try:
      sig = self.compute_sig_implicit_deps()
    except KeyError:
      try:
        nodes = []
        for k in bld.node_deps.get(self.unique_id(), []):
          if k.id & 3 == 2: # Node.FILE:
            if not k.id in bld.node_sigs[0]:
              nodes.append(k)
          else:
            if not k.id in bld.node_sigs[self.env.variant()]:
              nodes.append(k)
      except:
        nodes = '?'
      raise Utils.WafError('Missing node signature for %r (for implicit dependencies %r)' % (nodes, self))

    return sig

  def compute_sig_implicit_deps(self):
    """it is intended for .cpp and inferred .h files
    there is a single list (no tree traversal)
    this is the hot spot so ... do not touch"""
    upd = self.m.update

    bld = self.generator.bld
    tstamp = bld.node_sigs
    env = self.env

    for k in bld.node_deps.get(self.unique_id(), []):
      # unlikely but necessary if it happens
      if not k.parent.id in bld.cache_scanned_folders:
        # if the parent folder is removed, an OSError may be thrown
        bld.rescan(k.parent)

      # if the parent folder is removed, a KeyError will be thrown
      if k.id & 3 == 2: # Node.FILE:
        upd(tstamp[0][k.id])
      else:
        upd(tstamp[env.variant()][k.id])

    return self.m.digest()

def funex(c):
  dc = {}
  exec(c, dc)
  return dc['f']

reg_act = re.compile(r"(?P<backslash>\\)|(?P<dollar>\$\$)|(?P<subst>\$\{(?P<var>\w+)(?P<code>.*?)\})", re.M)
def compile_fun_shell(name, line):
  """Compiles a string (once) into a function, eg:
  simple_task_type('c++', '${CXX} -o ${TGT[0]} ${SRC} -I ${SRC[0].parent.bldpath()}')

  The env variables (CXX, ..) on the task must not hold dicts (order)
  The reserved keywords TGT and SRC represent the task input and output nodes

  quick test:
  bld(source='wscript', rule='echo "foo\\${SRC[0].name}\\bar"')
  """

  extr = []
  def repl(match):
    g = match.group
    if g('dollar'): return "$"
    elif g('backslash'): return '\\\\'
    elif g('subst'): extr.append((g('var'), g('code'))); return "%s"
    return None

  line = reg_act.sub(repl, line)

  parm = []
  dvars = []
  app = parm.append
  for (var, meth) in extr:
    if var == 'SRC':
      if meth: app('task.inputs%s' % meth)
      else: app('" ".join([a.srcpath(env) for a in task.inputs])')
    elif var == 'TGT':
      if meth: app('task.outputs%s' % meth)
      else: app('" ".join([a.bldpath(env) for a in task.outputs])')
    else:
      if not var in dvars: dvars.append(var)
      app("p('%s')" % var)
  if parm: parm = "%% (%s) " % (',\n\t\t'.join(parm))
  else: parm = ''

  c = COMPILE_TEMPLATE_SHELL % (line, parm)

  debug('action: %s', c)
  return (funex(c), dvars)

def compile_fun_noshell(name, line):

  extr = []
  def repl(match):
    g = match.group
    if g('dollar'): return "$"
    elif g('subst'): extr.append((g('var'), g('code'))); return "<<|@|>>"
    return None

  line2 = reg_act.sub(repl, line)
  params = line2.split('<<|@|>>')

  buf = []
  dvars = []
  app = buf.append
  for x in xrange(len(extr)):
    params[x] = params[x].strip()
    if params[x]:
      app("lst.extend(%r)" % params[x].split())
    (var, meth) = extr[x]
    if var == 'SRC':
      if meth: app('lst.append(task.inputs%s)' % meth)
      else: app("lst.extend([a.srcpath(env) for a in task.inputs])")
    elif var == 'TGT':
      if meth: app('lst.append(task.outputs%s)' % meth)
      else: app("lst.extend([a.bldpath(env) for a in task.outputs])")
    else:
      app('lst.extend(to_list(env[%r]))' % var)
      if not var in dvars: dvars.append(var)

  if params[-1]:
    app("lst.extend(%r)" % shlex.split(params[-1]))

  fun = COMPILE_TEMPLATE_NOSHELL % "\n\t".join(buf)
  debug('action: %s', fun)
  return (funex(fun), dvars)

def compile_fun(name, line, shell=None):
  "commands can be launched by the shell or not"
  if line.find('<') > 0 or line.find('>') > 0 or line.find('&&') > 0:
    shell = True
  #else:
  #  shell = False

  if shell is None:
    if sys.platform == 'win32':
      shell = False
    else:
      shell = True

  if shell:
    return compile_fun_shell(name, line)
  else:
    return compile_fun_noshell(name, line)

def simple_task_type(name, line, color='GREEN', vars=[], ext_in=[], ext_out=[], before=[], after=[], shell=None):
  """return a new Task subclass with the function run compiled from the line given"""
  (fun, dvars) = compile_fun(name, line, shell)
  fun.code = line
  return task_type_from_func(name, fun, vars or dvars, color, ext_in, ext_out, before, after)

def task_type_from_func(name, func, vars=[], color='GREEN', ext_in=[], ext_out=[], before=[], after=[]):
  """return a new Task subclass with the function run compiled from the line given"""
  params = {
    'run': func,
    'vars': vars,
    'color': color,
    'name': name,
    'ext_in': Utils.to_list(ext_in),
    'ext_out': Utils.to_list(ext_out),
    'before': Utils.to_list(before),
    'after': Utils.to_list(after),
  }

  cls = type(Task)(name, (Task,), params)
  TaskBase.classes[name] = cls
  return cls

def always_run(cls):
  """Set all task instances of this class to be executed whenever a build is started
  The task signature is calculated, but the result of the comparation between
  task signatures is bypassed
  """
  old = cls.runnable_status
  def always(self):
    old(self)
    return RUN_ME
  cls.runnable_status = always

def update_outputs(cls):
  """When a command is always run, it is possible that the output only change
  sometimes. By default the build node have as a hash the signature of the task
  which may not change. With this, the output nodes (produced) are hashed,
  and the hashes are set to the build nodes

  This may avoid unnecessary recompilations, but it uses more resources
  (hashing the output files) so it is not used by default
  """
  old_post_run = cls.post_run
  def post_run(self):
    old_post_run(self)
    bld = self.outputs[0].__class__.bld
    for output in self.outputs:
      bld.node_sigs[self.env.variant()][output.id] = Utils.h_file(output.abspath(self.env))
  cls.post_run = post_run

  old_runnable_status = cls.runnable_status
  def runnable_status(self):
    status = old_runnable_status(self)
    if status != RUN_ME:
      return status

    try:
      bld = self.outputs[0].__class__.bld
      new_sig  = self.signature()
      prev_sig = bld.task_sigs[self.unique_id()][0]
      if prev_sig == new_sig:
        for x in self.outputs:
          if not x.id in bld.node_sigs[self.env.variant()]:
            return RUN_ME
        return SKIP_ME
    except KeyError:
      pass
    except IndexError:
      pass
    return RUN_ME
  cls.runnable_status = runnable_status

def extract_outputs(tasks):
  """file_deps: Infer additional dependencies from task input and output nodes
  """
  v = {}
  for x in tasks:
    try:
      (ins, outs) = v[x.env.variant()]
    except KeyError:
      ins = {}
      outs = {}
      v[x.env.variant()] = (ins, outs)

    for a in getattr(x, 'inputs', []):
      try: ins[a.id].append(x)
      except KeyError: ins[a.id] = [x]
    for a in getattr(x, 'outputs', []):
      try: outs[a.id].append(x)
      except KeyError: outs[a.id] = [x]

  for (ins, outs) in v.values():
    links = set(ins.iterkeys()).intersection(outs.iterkeys())
    for k in links:
      for a in ins[k]:
        for b in outs[k]:
          a.set_run_after(b)

def extract_deps(tasks):
  """file_deps: Infer additional dependencies from task input and output nodes and from implicit dependencies
  returned by the scanners - that will only work if all tasks are created

  this is aimed at people who have pathological builds and who do not care enough
  to implement the build dependencies properly

  with two loops over the list of tasks, do not expect this to be really fast
  """

  # first reuse the function above
  extract_outputs(tasks)

  # map the output nodes to the tasks producing them
  out_to_task = {}
  for x in tasks:
    v = x.env.variant()
    try:
      lst = x.outputs
    except AttributeError:
      pass
    else:
      for node in lst:
        out_to_task[(v, node.id)] = x

  # map the dependencies found to the tasks compiled
  dep_to_task = {}
  for x in tasks:
    try:
      x.signature()
    except: # this is on purpose
      pass

    v = x.env.variant()
    key = x.unique_id()
    for k in x.generator.bld.node_deps.get(x.unique_id(), []):
      try: dep_to_task[(v, k.id)].append(x)
      except KeyError: dep_to_task[(v, k.id)] = [x]

  # now get the intersection
  deps = set(dep_to_task.keys()).intersection(set(out_to_task.keys()))

  # and add the dependencies from task to task
  for idx in deps:
    for k in dep_to_task[idx]:
      k.set_run_after(out_to_task[idx])

  # cleanup, remove the signatures
  for x in tasks:
    try:
      delattr(x, 'cache_sig')
    except AttributeError:
      pass

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.