Source Code Cross Referenced for Utils.java in  » Rule-Engine » drolls-Rule-Engine » org » drools » util » concurrent » locks » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Rule Engine » drolls Rule Engine » org.drools.util.concurrent.locks 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * Written by Dawid Kurzyniec, based on code written by Doug Lea with assistance
003:         * from members of JCP JSR-166 Expert Group. Released to the public domain,
004:         * as explained at http://creativecommons.org/licenses/publicdomain.
005:         *
006:         * Thanks to Craig Mattocks for suggesting to use <code>sun.misc.Perf</code>.
007:         */
008:
009:        package org.drools.util.concurrent.locks;
010:
011:        import java.security.AccessController;
012:        import java.security.PrivilegedAction;
013:        import java.lang.reflect.Array;
014:        import java.util.Iterator;
015:        import java.util.Collection;
016:
017:        import org.drools.util.ArrayUtils;
018:
019:        /**
020:         * <p>
021:         * This class groups together the functionality of java.util.concurrent that
022:         * cannot be fully and reliably implemented in backport, but for which some
023:         * form of emulation is possible.
024:         * <p>
025:         * Currently, this class contains methods related to nanosecond-precision
026:         * timing, particularly via the {@link #nanoTime} method. To measure time
027:         * accurately, this method by default uses <code>java.sun.Perf</code> on
028:         * JDK1.4.2 and it falls back to <code>System.currentTimeMillis</code>
029:         * on earlier JDKs.
030:         *
031:         * @author Dawid Kurzyniec
032:         * @version 1.0
033:         */
034:        public final class Utils {
035:
036:            private final static NanoTimer nanoTimer;
037:            private final static String providerProp = "edu.emory.mathcs.backport.java.util.concurrent.NanoTimerProvider";
038:
039:            static {
040:                NanoTimer timer = null;
041:                try {
042:                    String nanoTimerClassName = (String) AccessController
043:                            .doPrivileged(new PrivilegedAction() {
044:                                public Object run() {
045:                                    return System.getProperty(providerProp);
046:                                }
047:                            });
048:                    if (nanoTimerClassName != null) {
049:                        Class cls = Class.forName(nanoTimerClassName);
050:                        timer = (NanoTimer) cls.newInstance();
051:                    }
052:                } catch (Exception e) {
053:                    System.err
054:                            .println("WARNING: unable to load the system-property-defined "
055:                                    + "nanotime provider; switching to the default");
056:                    e.printStackTrace();
057:                }
058:
059:                if (timer == null) {
060:                    try {
061:                        timer = new SunPerfProvider();
062:                    } catch (Throwable e) {
063:                    }
064:                }
065:
066:                if (timer == null) {
067:                    timer = new MillisProvider();
068:                }
069:
070:                nanoTimer = timer;
071:            }
072:
073:            private Utils() {
074:            }
075:
076:            /**
077:             * Returns the current value of the most precise available system timer,
078:             * in nanoseconds. This method can only be used to measure elapsed time and
079:             * is not related to any other notion of system or wall-clock time. The
080:             * value returned represents nanoseconds since some fixed but arbitrary
081:             * time (perhaps in the future, so values may be negative). This method
082:             * provides nanosecond precision, but not necessarily nanosecond accuracy.
083:             * No guarantees are made about how frequently values change. Differences
084:             * in successive calls that span greater than approximately 292 years
085:             * (2^63 nanoseconds) will not accurately compute elapsed time due to
086:             * numerical overflow.
087:             * <p>
088:             * <em>Implementation note:</em>By default, this method uses
089:             * <code>sun.misc.Perf</code> on Java 1.4.2, and falls back to
090:             * System.currentTimeMillis() emulation on earlier JDKs. Custom
091:             * timer can be provided via the system property
092:             * <code>edu.emory.mathcs.backport.java.util.concurrent.NanoTimerProvider</code>.
093:             * The value of the property should name a class implementing
094:             * {@link NanoTimer} interface.
095:             * <p>
096:             * Note: on JDK 1.4.2, <code>sun.misc.Perf</code> timer seems to have
097:             * resolution of the order of 1 microsecond, measured on Linux.
098:             *
099:             * @return The current value of the system timer, in nanoseconds.
100:             */
101:            public static long nanoTime() {
102:                return nanoTimer.nanoTime();
103:            }
104:
105:            private static final class SunPerfProvider implements  NanoTimer {
106:                final sun.misc.Perf perf;
107:                final long multiplier, divisor;
108:
109:                SunPerfProvider() {
110:                    perf = (sun.misc.Perf) AccessController
111:                            .doPrivileged(new PrivilegedAction() {
112:                                public Object run() {
113:                                    return sun.misc.Perf.getPerf();
114:                                }
115:                            });
116:                    // trying to avoid BOTH overflow and rounding errors
117:                    long numerator = 1000000000;
118:                    long denominator = perf.highResFrequency();
119:                    long gcd = gcd(numerator, denominator);
120:                    this .multiplier = numerator / gcd;
121:                    this .divisor = denominator / gcd;
122:                }
123:
124:                public long nanoTime() {
125:                    long ctr = perf.highResCounter();
126:
127:                    // anything less sophisticated suffers either from rounding errors
128:                    // (FP arithmetics, backport v1.0) or overflow, when gcd is small
129:                    // (a bug in backport v1.0_01 reported by Ramesh Nethi)
130:
131:                    return ((ctr / divisor) * multiplier) + (ctr % divisor)
132:                            * multiplier / divisor;
133:
134:                    // even the above can theoretically cause problems if your JVM is
135:                    // running for sufficiently long time, but "sufficiently" means 292
136:                    // years (worst case), or 30,000 years (common case).
137:
138:                    // Details: when the ticks ctr overflows, there is no way to avoid
139:                    // discontinuity in computed nanos, even in infinite arithmetics,
140:                    // unless we count number of overflows that the ctr went through
141:                    // since the JVM started. This follows from the fact that
142:                    // (2^64*multiplier/divisor) mod (2^64) > 0 in general case.
143:                    // Theoretically we could find out the number of overflows by
144:                    // checking System.currentTimeMillis(), but this is unreliable
145:                    // since the system time can unpredictably change during the JVM
146:                    // lifetime.
147:                    // The time to overflow is 2^63 / ticks frequency. With current
148:                    // ticks frequencies of several MHz, it gives about 30,000 years
149:                    // before the problem happens. If ticks frequency reaches 1 GHz, the
150:                    // time to overflow is 292 years. It is unlikely that the frequency
151:                    // ever exceeds 1 GHz. We could double the time to overflow
152:                    // (to 2^64 / frequency) by using unsigned arithmetics, e.g. by
153:                    // adding the following correction whenever the ticks is negative:
154:                    //      -2*((Long.MIN_VALUE / divisor) * multiplier +
155:                    //          (Long.MIN_VALUE % divisor) * multiplier / divisor)
156:                    // But, with the worst case of as much as 292 years, it does not
157:                    // seem justified.
158:                }
159:            }
160:
161:            private static final class MillisProvider implements  NanoTimer {
162:                MillisProvider() {
163:                }
164:
165:                public long nanoTime() {
166:                    return System.currentTimeMillis() * 1000000;
167:                }
168:            }
169:
170:            private static long gcd(long a, long b) {
171:                long r;
172:                while (b > 0) {
173:                    r = a % b;
174:                    a = b;
175:                    b = r;
176:                }
177:                return a;
178:            }
179:
180:            public static Object[] collectionToArray(Collection c) {
181:                // guess the array size; expect to possibly be different
182:                int len = c.size();
183:                Object[] arr = new Object[len];
184:                Iterator itr = c.iterator();
185:                int idx = 0;
186:                while (true) {
187:                    while (idx < len && itr.hasNext()) {
188:                        arr[idx++] = itr.next();
189:                    }
190:                    if (!itr.hasNext()) {
191:                        if (idx == len)
192:                            return arr;
193:                        // otherwise have to trim
194:                        return ArrayUtils.copyOf(arr, idx, Object[].class);
195:                    }
196:                    // otherwise, have to grow
197:                    int newcap = ((arr.length / 2) + 1) * 3;
198:                    if (newcap < arr.length) {
199:                        // overflow
200:                        if (arr.length < Integer.MAX_VALUE) {
201:                            newcap = Integer.MAX_VALUE;
202:                        } else {
203:                            throw new OutOfMemoryError(
204:                                    "required array size too large");
205:                        }
206:                    }
207:                    arr = ArrayUtils.copyOf(arr, newcap, Object[].class);
208:                    len = newcap;
209:                }
210:            }
211:
212:            public static Object[] collectionToArray(Collection c, Object[] a) {
213:                Class aType = a.getClass();
214:                // guess the array size; expect to possibly be different
215:                int len = c.size();
216:                Object[] arr = (a.length >= len ? a : (Object[]) Array
217:                        .newInstance(aType.getComponentType(), len));
218:                Iterator itr = c.iterator();
219:                int idx = 0;
220:                while (true) {
221:                    while (idx < len && itr.hasNext()) {
222:                        arr[idx++] = itr.next();
223:                    }
224:                    if (!itr.hasNext()) {
225:                        if (idx == len)
226:                            return arr;
227:                        if (arr == a) {
228:                            // orig array -> null terminate
229:                            a[idx] = null;
230:                            return a;
231:                        } else {
232:                            // have to trim
233:                            return ArrayUtils.copyOf(arr, idx, aType);
234:                        }
235:                    }
236:                    // otherwise, have to grow
237:                    int newcap = ((arr.length / 2) + 1) * 3;
238:                    if (newcap < arr.length) {
239:                        // overflow
240:                        if (arr.length < Integer.MAX_VALUE) {
241:                            newcap = Integer.MAX_VALUE;
242:                        } else {
243:                            throw new OutOfMemoryError(
244:                                    "required array size too large");
245:                        }
246:                    }
247:                    arr = ArrayUtils.copyOf(arr, newcap, aType);
248:                    len = newcap;
249:                }
250:            }
251:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.