Source Code Cross Referenced for Interpreter.java in  » Parser » antlr-3.0.1 » org » antlr » tool » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Parser » antlr 3.0.1 » org.antlr.tool 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         [The "BSD licence"]
003:         Copyright (c) 2005-2006 Terence Parr
004:         All rights reserved.
005:
006:         Redistribution and use in source and binary forms, with or without
007:         modification, are permitted provided that the following conditions
008:         are met:
009:         1. Redistributions of source code must retain the above copyright
010:            notice, this list of conditions and the following disclaimer.
011:         2. Redistributions in binary form must reproduce the above copyright
012:            notice, this list of conditions and the following disclaimer in the
013:            documentation and/or other materials provided with the distribution.
014:         3. The name of the author may not be used to endorse or promote products
015:            derived from this software without specific prior written permission.
016:
017:         THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
018:         IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
019:         OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
020:         IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
021:         INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
022:         NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
023:         DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
024:         THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
025:         (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
026:         THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
027:         */
028:        package org.antlr.tool;
029:
030:        import org.antlr.analysis.DFA;
031:        import org.antlr.analysis.*;
032:        import org.antlr.runtime.*;
033:        import org.antlr.runtime.debug.DebugEventListener;
034:        import org.antlr.runtime.debug.BlankDebugEventListener;
035:        import org.antlr.runtime.tree.ParseTree;
036:        import org.antlr.runtime.debug.ParseTreeBuilder;
037:        import org.antlr.misc.IntervalSet;
038:
039:        import java.util.List;
040:        import java.util.Stack;
041:
042:        /** The recognition interpreter/engine for grammars.  Separated
043:         *  out of Grammar as it's related, but technically not a Grammar function.
044:         *  You create an interpreter for a grammar and an input stream.  This object
045:         *  can act as a TokenSource so that you can hook up two grammars (via
046:         *  a CommonTokenStream) to lex/parse.  Being a token source only makes sense
047:         *  for a lexer grammar of course.
048:         */
049:        public class Interpreter implements  TokenSource {
050:            protected Grammar grammar;
051:            protected IntStream input;
052:
053:            /** A lexer listener that just creates token objects as they
054:             *  are matched.  scan() use this listener to get a single object.
055:             *  To get a stream of tokens, you must call scan() multiple times,
056:             *  recording the token object result after each call.
057:             */
058:            class LexerActionGetTokenType extends BlankDebugEventListener {
059:                public CommonToken token;
060:                Grammar g;
061:
062:                public LexerActionGetTokenType(Grammar g) {
063:                    this .g = g;
064:                }
065:
066:                public void exitRule(String ruleName) {
067:                    if (!ruleName.equals(Grammar.ARTIFICIAL_TOKENS_RULENAME)) {
068:                        int type = g.getTokenType(ruleName);
069:                        int channel = Token.DEFAULT_CHANNEL;
070:                        token = new CommonToken((CharStream) input, type,
071:                                channel, 0, 0);
072:                    }
073:                }
074:            }
075:
076:            public Interpreter(Grammar grammar, IntStream input) {
077:                this .grammar = grammar;
078:                this .input = input;
079:            }
080:
081:            public Token nextToken() {
082:                if (grammar.type != Grammar.LEXER) {
083:                    return null;
084:                }
085:                if (input.LA(1) == CharStream.EOF) {
086:                    return Token.EOF_TOKEN;
087:                }
088:                int start = input.index();
089:                int charPos = ((CharStream) input).getCharPositionInLine();
090:                CommonToken token = null;
091:                loop: while (input.LA(1) != CharStream.EOF) {
092:                    try {
093:                        token = scan(Grammar.ARTIFICIAL_TOKENS_RULENAME, null);
094:                        break;
095:                    } catch (RecognitionException re) {
096:                        // report a problem and try for another
097:                        reportScanError(re);
098:                        continue loop;
099:                    }
100:                }
101:                // the scan can only set type
102:                // we must set the line, and other junk here to make it a complete token
103:                int stop = input.index() - 1;
104:                if (token == null) {
105:                    return Token.EOF_TOKEN;
106:                }
107:                token.setLine(((CharStream) input).getLine());
108:                token.setStartIndex(start);
109:                token.setStopIndex(stop);
110:                token.setCharPositionInLine(charPos);
111:                return token;
112:            }
113:
114:            /** For a given input char stream, try to match against the NFA
115:             *  starting at startRule.  This is a deterministic parse even though
116:             *  it is using an NFA because it uses DFAs at each decision point to
117:             *  predict which alternative will succeed.  This is exactly what the
118:             *  generated parser will do.
119:             *
120:             *  This only does lexer grammars.
121:             *
122:             *  Return the token type associated with the final rule end state.
123:             */
124:            public void scan(String startRule, DebugEventListener actions,
125:                    List visitedStates) throws RecognitionException {
126:                if (grammar.type != Grammar.LEXER) {
127:                    return;
128:                }
129:                CharStream in = (CharStream) this .input;
130:                //System.out.println("scan("+startRule+",'"+in.substring(in.index(),in.size()-1)+"')");
131:                // Build NFAs/DFAs from the grammar AST if NFAs haven't been built yet
132:                if (grammar.getRuleStartState(startRule) == null) {
133:                    grammar.createNFAs();
134:                }
135:
136:                if (!grammar.allDecisionDFAHaveBeenCreated()) {
137:                    // Create the DFA predictors for each decision
138:                    grammar.createLookaheadDFAs();
139:                }
140:
141:                // do the parse
142:                Stack ruleInvocationStack = new Stack();
143:                NFAState start = grammar.getRuleStartState(startRule);
144:                NFAState stop = grammar.getRuleStopState(startRule);
145:                parseEngine(startRule, start, stop, in, ruleInvocationStack,
146:                        actions, visitedStates);
147:            }
148:
149:            public CommonToken scan(String startRule)
150:                    throws RecognitionException {
151:                return scan(startRule, null);
152:            }
153:
154:            public CommonToken scan(String startRule, List visitedStates)
155:                    throws RecognitionException {
156:                LexerActionGetTokenType actions = new LexerActionGetTokenType(
157:                        grammar);
158:                scan(startRule, actions, visitedStates);
159:                return actions.token;
160:            }
161:
162:            public void parse(String startRule, DebugEventListener actions,
163:                    List visitedStates) throws RecognitionException {
164:                //System.out.println("parse("+startRule+")");
165:                // Build NFAs/DFAs from the grammar AST if NFAs haven't been built yet
166:                if (grammar.getRuleStartState(startRule) == null) {
167:                    grammar.createNFAs();
168:                }
169:                if (!grammar.allDecisionDFAHaveBeenCreated()) {
170:                    // Create the DFA predictors for each decision
171:                    grammar.createLookaheadDFAs();
172:                }
173:                // do the parse
174:                Stack ruleInvocationStack = new Stack();
175:                NFAState start = grammar.getRuleStartState(startRule);
176:                NFAState stop = grammar.getRuleStopState(startRule);
177:                parseEngine(startRule, start, stop, input, ruleInvocationStack,
178:                        actions, visitedStates);
179:            }
180:
181:            public ParseTree parse(String startRule)
182:                    throws RecognitionException {
183:                return parse(startRule, null);
184:            }
185:
186:            public ParseTree parse(String startRule, List visitedStates)
187:                    throws RecognitionException {
188:                ParseTreeBuilder actions = new ParseTreeBuilder(grammar.name);
189:                try {
190:                    parse(startRule, actions, visitedStates);
191:                } catch (RecognitionException re) {
192:                    // Errors are tracked via the ANTLRDebugInterface
193:                    // Exceptions are used just to blast out of the parse engine
194:                    // The error will be in the parse tree.
195:                }
196:                return actions.getTree();
197:            }
198:
199:            /** Fill a list of all NFA states visited during the parse */
200:            protected void parseEngine(String startRule, NFAState start,
201:                    NFAState stop, IntStream input, Stack ruleInvocationStack,
202:                    DebugEventListener actions, List visitedStates)
203:                    throws RecognitionException {
204:                if (actions != null) {
205:                    actions.enterRule(start.getEnclosingRule());
206:                }
207:                NFAState s = start;
208:                int t = input.LA(1);
209:                while (s != stop) {
210:                    if (visitedStates != null) {
211:                        visitedStates.add(s);
212:                    }
213:                    /*
214:                    System.out.println("parse state "+s.stateNumber+" input="+
215:                    	grammar.getTokenDisplayName(t));
216:                     */
217:                    // CASE 1: decision state
218:                    if (s.getDecisionNumber() > 0
219:                            && grammar.getNumberOfAltsForDecisionNFA(s) > 1) {
220:                        // decision point, must predict and jump to alt
221:                        DFA dfa = grammar
222:                                .getLookaheadDFA(s.getDecisionNumber());
223:                        /*
224:                        if ( grammar.type!=Grammar.LEXER ) {
225:                        	System.out.println("decision: "+
226:                        				   dfa.getNFADecisionStartState().getDescription()+
227:                        				   " input="+grammar.getTokenDisplayName(t));
228:                        }
229:                         */
230:                        int m = input.mark();
231:                        int predictedAlt = predict(dfa);
232:                        if (predictedAlt == NFA.INVALID_ALT_NUMBER) {
233:                            String description = dfa.getNFADecisionStartState()
234:                                    .getDescription();
235:                            NoViableAltException nvae = new NoViableAltException(
236:                                    description, dfa.getDecisionNumber(),
237:                                    s.stateNumber, input);
238:                            if (actions != null) {
239:                                actions.recognitionException(nvae);
240:                            }
241:                            input.consume(); // recover
242:                            throw nvae;
243:                        }
244:                        input.rewind(m);
245:                        int parseAlt = s.translateDisplayAltToWalkAlt(dfa,
246:                                predictedAlt);
247:                        /*
248:                        if ( grammar.type!=Grammar.LEXER ) {
249:                        	System.out.println("predicted alt "+predictedAlt+", parseAlt "+
250:                        					   parseAlt);
251:                        }
252:                         */
253:                        NFAState alt = grammar.getNFAStateForAltOfDecision(s,
254:                                parseAlt);
255:                        s = (NFAState) alt.transition(0).target;
256:                        continue;
257:                    }
258:
259:                    // CASE 2: finished matching a rule
260:                    if (s.isAcceptState()) { // end of rule node
261:                        if (actions != null) {
262:                            actions.exitRule(s.getEnclosingRule());
263:                        }
264:                        if (ruleInvocationStack.empty()) {
265:                            // done parsing.  Hit the start state.
266:                            //System.out.println("stack empty in stop state for "+s.getEnclosingRule());
267:                            break;
268:                        }
269:                        // pop invoking state off the stack to know where to return to
270:                        NFAState invokingState = (NFAState) ruleInvocationStack
271:                                .pop();
272:                        RuleClosureTransition invokingTransition = (RuleClosureTransition) invokingState
273:                                .transition(0);
274:                        // move to node after state that invoked this rule
275:                        s = invokingTransition.getFollowState();
276:                        continue;
277:                    }
278:
279:                    Transition trans = s.transition(0);
280:                    Label label = trans.label;
281:                    // CASE 3: epsilon transition
282:                    if (label.isEpsilon()) {
283:                        // CASE 3a: rule invocation state
284:                        if (trans instanceof  RuleClosureTransition) {
285:                            ruleInvocationStack.push(s);
286:                            s = (NFAState) trans.target;
287:                            if (actions != null) {
288:                                actions.enterRule(s.getEnclosingRule());
289:                            }
290:                        }
291:                        // CASE 3b: plain old epsilon transition, just move
292:                        else {
293:                            s = (NFAState) trans.target;
294:                        }
295:                    }
296:
297:                    // CASE 4: match label on transition
298:                    else if (label.matches(t)) {
299:                        if (actions != null) {
300:                            if (grammar.type == Grammar.PARSER
301:                                    || grammar.type == Grammar.COMBINED) {
302:                                actions.consumeToken(((TokenStream) input)
303:                                        .LT(1));
304:                            }
305:                        }
306:                        s = (NFAState) s.transition(0).target;
307:                        input.consume();
308:                        t = input.LA(1);
309:                    }
310:
311:                    // CASE 5: error condition; label is inconsistent with input
312:                    else {
313:                        if (label.isAtom()) {
314:                            MismatchedTokenException mte = new MismatchedTokenException(
315:                                    label.getAtom(), input);
316:                            if (actions != null) {
317:                                actions.recognitionException(mte);
318:                            }
319:                            input.consume(); // recover
320:                            throw mte;
321:                        } else if (label.isSet()) {
322:                            MismatchedSetException mse = new MismatchedSetException(
323:                                    ((IntervalSet) label.getSet())
324:                                            .toRuntimeBitSet(), input);
325:                            if (actions != null) {
326:                                actions.recognitionException(mse);
327:                            }
328:                            input.consume(); // recover
329:                            throw mse;
330:                        } else if (label.isSemanticPredicate()) {
331:                            FailedPredicateException fpe = new FailedPredicateException(
332:                                    input, s.getEnclosingRule(), label
333:                                            .getSemanticContext().toString());
334:                            if (actions != null) {
335:                                actions.recognitionException(fpe);
336:                            }
337:                            input.consume(); // recover
338:                            throw fpe;
339:                        } else {
340:                            throw new RecognitionException(input); // unknown error
341:                        }
342:                    }
343:                }
344:                //System.out.println("hit stop state for "+stop.getEnclosingRule());
345:                if (actions != null) {
346:                    actions.exitRule(stop.getEnclosingRule());
347:                }
348:            }
349:
350:            /** Given an input stream, return the unique alternative predicted by
351:             *  matching the input.  Upon error, return NFA.INVALID_ALT_NUMBER
352:             *  The first symbol of lookahead is presumed to be primed; that is,
353:             *  input.lookahead(1) must point at the input symbol you want to start
354:             *  predicting with.
355:             */
356:            public int predict(DFA dfa) {
357:                DFAState s = dfa.startState;
358:                int c = input.LA(1);
359:                Transition eotTransition = null;
360:                dfaLoop: while (!s.isAcceptState()) {
361:                    /*
362:                    System.out.println("DFA.predict("+s.getStateNumber()+", "+
363:                    		dfa.getNFA().getGrammar().getTokenName(c)+")");
364:                     */
365:                    // for each edge of s, look for intersection with current char
366:                    for (int i = 0; i < s.getNumberOfTransitions(); i++) {
367:                        Transition t = s.transition(i);
368:                        // special case: EOT matches any char
369:                        if (t.label.matches(c)) {
370:                            // take transition i
371:                            s = (DFAState) t.target;
372:                            input.consume();
373:                            c = input.LA(1);
374:                            continue dfaLoop;
375:                        }
376:                        if (t.label.getAtom() == Label.EOT) {
377:                            eotTransition = t;
378:                        }
379:                    }
380:                    if (eotTransition != null) {
381:                        s = (DFAState) eotTransition.target;
382:                        continue dfaLoop;
383:                    }
384:                    /*
385:                    ErrorManager.error(ErrorManager.MSG_NO_VIABLE_DFA_ALT,
386:                    				   s,
387:                    				   dfa.nfa.grammar.getTokenName(c));
388:                     */
389:                    return NFA.INVALID_ALT_NUMBER;
390:                }
391:                // woohoo!  We know which alt to predict
392:                // nothing emanates from a stop state; must terminate anyway
393:                /*
394:                System.out.println("DFA stop state "+s.getStateNumber()+" predicts "+
395:                		s.getUniquelyPredictedAlt());
396:                 */
397:                return s.getUniquelyPredictedAlt();
398:            }
399:
400:            public void reportScanError(RecognitionException re) {
401:                CharStream cs = (CharStream) input;
402:                // print as good of a message is we can't, given that we do not have
403:                // a Lexer object and, hence, cannot call the routine to get a
404:                // decent error message.
405:                System.err.println("problem matching token at " + cs.getLine()
406:                        + ":" + cs.getCharPositionInLine() + " "
407:                        + re.getClass().getName());
408:            }
409:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.