Source Code Cross Referenced for Utils.java in  » Database-ORM » openjpa » org » apache » openjpa » lib » util » concurrent » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Database ORM » openjpa » org.apache.openjpa.lib.util.concurrent 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * Licensed to the Apache Software Foundation (ASF) under one
003:         * or more contributor license agreements.  See the NOTICE file
004:         * distributed with this work for additional information
005:         * regarding copyright ownership.  The ASF licenses this file
006:         * to you under the Apache License, Version 2.0 (the
007:         * "License"); you may not use this file except in compliance
008:         * with the License.  You may obtain a copy of the License at
009:         *
010:         * http://www.apache.org/licenses/LICENSE-2.0
011:         *
012:         * Unless required by applicable law or agreed to in writing,
013:         * software distributed under the License is distributed on an
014:         * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
015:         * KIND, either express or implied.  See the License for the
016:         * specific language governing permissions and limitations
017:         * under the License.    
018:         */
019:        /*
020:         * Written by Dawid Kurzyniec, based on code written by Doug Lea with assistance
021:         * from members of JCP JSR-166 Expert Group. Released to the public domain,
022:         * as explained at http://creativecommons.org/licenses/publicdomain.
023:         * Thanks to Craig Mattocks for suggesting to use <code>sun.misc.Perf</code>.
024:         */
025:
026:        package org.apache.openjpa.lib.util.concurrent;
027:
028:        import java.lang.reflect.Array;
029:        import java.security.AccessController;
030:        import java.security.PrivilegedAction;
031:        import java.util.Collection;
032:        import java.util.Iterator;
033:
034:        import org.apache.openjpa.lib.util.J2DoPrivHelper;
035:
036:        /**
037:         * This class groups together the functionality of java.util.concurrent that
038:         * cannot be fully and reliably implemented in backport, but for which some
039:         * form of emulation is possible.
040:         * Currently, this class contains methods related to nanosecond-precision
041:         * timing, particularly via the {@link #nanoTime} method. To measure time
042:         * accurately, this method by default uses <code>java.sun.Perf</code> on
043:         * JDK1.4.2 and it falls back to <code>System.currentTimeMillis</code>
044:         * on earlier JDKs.
045:         *
046:         * @author Dawid Kurzyniec
047:         * @version 1.0
048:         */
049:        public final class Utils {
050:
051:            private final static NanoTimer nanoTimer;
052:            private final static String providerProp = "edu.emory.mathcs.backport.java.util.concurrent.NanoTimerProvider";
053:
054:            static {
055:                NanoTimer timer = null;
056:                try {
057:                    String nanoTimerClassName = (String) AccessController
058:                            .doPrivileged(J2DoPrivHelper
059:                                    .getPropertyAction(providerProp));
060:                    if (nanoTimerClassName != null) {
061:                        Class cls = Class.forName(nanoTimerClassName);
062:                        timer = (NanoTimer) AccessController
063:                                .doPrivileged(J2DoPrivHelper
064:                                        .newInstanceAction(cls));
065:                    }
066:                } catch (Exception e) {
067:                    System.err
068:                            .println("WARNING: unable to load the system-property-defined "
069:                                    + "nanotime provider; switching to the default");
070:                    e.printStackTrace();
071:                }
072:
073:                if (timer == null) {
074:                    try {
075:                        timer = new SunPerfProvider();
076:                    } catch (Throwable e) {
077:                    }
078:                }
079:
080:                if (timer == null) {
081:                    timer = new MillisProvider();
082:                }
083:
084:                nanoTimer = timer;
085:            }
086:
087:            private Utils() {
088:            }
089:
090:            /**
091:             * Returns the current value of the most precise available system timer,
092:             * in nanoseconds. This method can only be used to measure elapsed time and
093:             * is not related to any other notion of system or wall-clock time. The
094:             * value returned represents nanoseconds since some fixed but arbitrary
095:             * time(perhaps in the future, so values may be negative). This method
096:             * provides nanosecond precision, but not necessarily nanosecond accuracy.
097:             * No guarantees are made about how frequently values change. Differences
098:             * in successive calls that span greater than approximately 292 years
099:             * (2^63 nanoseconds) will not accurately compute elapsed time due to
100:             * numerical overflow.
101:             * 
102:             * <em>Implementation note:</em>By default, this method uses
103:             * <code>sun.misc.Perf</code> on Java 1.4.2, and falls back to
104:             * System.currentTimeMillis() emulation on earlier JDKs. Custom
105:             * timer can be provided via the system property
106:             * <code>edu.emory.mathcs.backport.java.util.concurrent.NanoTimerProvider</code>.
107:             * The value of the property should name a class implementing
108:             * {@link NanoTimer} interface.
109:             * Note: on JDK 1.4.2, <code>sun.misc.Perf</code> timer seems to have
110:             * resolution of the order of 1 microsecond, measured on Linux.
111:             *
112:             * @return The current value of the system timer, in nanoseconds.
113:             */
114:            public static long nanoTime() {
115:                return nanoTimer.nanoTime();
116:            }
117:
118:            /**
119:             * Causes the current thread to wait until it is signalled or interrupted,
120:             * or the specified waiting time elapses. This method originally appears
121:             * in the {@link Condition} interface, but it was moved to here since it
122:             * can only be emulated, with very little accuracy guarantees: the
123:             * efficient implementation requires accurate nanosecond timer and native
124:             * support for nanosecond-precision wait queues, which are not usually
125:             * present in JVMs prior to 1.5. Loss of precision may cause total waiting
126:             * times to be systematically shorter than specified when re-waits occur.
127:             * The lock associated with this condition is atomically
128:             * released and the current thread becomes disabled for thread scheduling
129:             * purposes and lies dormant until <em>one</em> of five things happens:
130:             * <ul>
131:             * <li>Some other thread invokes the {@link
132:             * edu.emory.mathcs.backport.java.util.concurrent.locks.Condition#signal}
133:             * method for this
134:             * <tt>Condition</tt> and the current thread happens to be chosen as the
135:             * thread to be awakened; or
136:             * <li>Some other thread invokes the {@link
137:             * edu.emory.mathcs.backport.java.util.concurrent.locks.Condition#signalAll}
138:             * method for this
139:             * <tt>Condition</tt>; or
140:             * <li>Some other thread {@link Thread#interrupt interrupts} the current
141:             * thread, and interruption of thread suspension is supported; or
142:             * <li>The specified waiting time elapses; or
143:             * <li>A &quot;<em>spurious wakeup</em>&quot; occurs.
144:             * </ul> In all cases, before this method can return the current thread must
145:             * re-acquire the lock associated with this condition. When the
146:             * thread returns it is <em>guaranteed</em> to hold this lock.
147:             * If the current thread:
148:             * <ul>
149:             * <li>has its interrupted status set on entry to this method; or
150:             * <li>is {@link Thread#interrupt interrupted} while waiting
151:             * and interruption of thread suspension is supported,
152:             * </ul>
153:             * then {@link InterruptedException} is thrown and the current thread's
154:             * interrupted status is cleared. It is not specified, in the first
155:             * case, whether or not the test for interruption occurs before the lock
156:             * is released. The method returns an estimate of the number of nanoseconds
157:             * remaining to wait given the supplied <tt>nanosTimeout</tt>
158:             * value upon return, or a value less than or equal to zero if it
159:             * timed out. Accuracy of this estimate is directly dependent on the
160:             * accuracy of {@link #nanoTime}. This value can be used to determine
161:             * whether and how long to re-wait in cases where the wait returns but an
162:             * awaited condition still does not hold. Typical uses of this method take
163:             * the following form:
164:             * 
165:             * <pre> synchronized boolean aMethod(long timeout, TimeUnit unit) {
166:             * long nanosTimeout = unit.toNanos(timeout);
167:             * while (!conditionBeingWaitedFor) { if (nanosTimeout &gt; 0)
168:             * nanosTimeout = theCondition.awaitNanos(nanosTimeout); else return false;
169:             * } // ... }
170:             * </pre>
171:             * 
172:             * <b>Implementation Considerations</b>
173:             * The current thread is assumed to hold the lock associated with this
174:             * <tt>Condition</tt> when this method is called.
175:             * It is up to the implementation to determine if this is
176:             * the case and if not, how to respond. Typically, an exception will be
177:             * thrown(such as {@link IllegalMonitorStateException}) and the
178:             * implementation must document that fact.
179:             * A condition implementation can favor responding to an interrupt over
180:             * normal method return in response to a signal, or over indicating the
181:             * elapse of the specified waiting time. In either case the implementation
182:             * must ensure that the signal is redirected to another waiting thread, if
183:             * there is one.
184:             *
185:             * @param cond the condition to wait for
186:             * @param nanosTimeout the maximum time to wait, in nanoseconds
187:             * @return A value less than or equal to zero if the wait has
188:             * timed out; otherwise an estimate, that
189:             * is strictly less than the <tt>nanosTimeout</tt> argument,
190:             * of the time still remaining when this method returned.
191:             * @throws InterruptedException if the current thread is interrupted(and
192:             * interruption of thread suspension is supported).
193:             */
194:            public static long awaitNanos(Condition cond, long nanosTimeout)
195:                    throws InterruptedException {
196:                if (nanosTimeout <= 0)
197:                    return nanosTimeout;
198:                long now = nanoTime();
199:                cond.await(nanosTimeout, TimeUnit.NANOSECONDS);
200:                return nanosTimeout - (nanoTime() - now);
201:            }
202:
203:            private static final class SunPerfProvider implements  NanoTimer {
204:
205:                final sun.misc.Perf perf;
206:                final long multiplier, divisor;
207:
208:                SunPerfProvider() {
209:                    perf = (sun.misc.Perf) AccessController
210:                            .doPrivileged(new PrivilegedAction() {
211:                                public Object run() {
212:                                    return sun.misc.Perf.getPerf();
213:                                }
214:                            });
215:                    // trying to avoid BOTH overflow and rounding errors
216:                    long numerator = 1000000000;
217:                    long denominator = perf.highResFrequency();
218:                    long gcd = gcd(numerator, denominator);
219:                    this .multiplier = numerator / gcd;
220:                    this .divisor = denominator / gcd;
221:                }
222:
223:                public long nanoTime() {
224:                    long ctr = perf.highResCounter();
225:
226:                    // anything less sophisticated suffers either from rounding errors
227:                    // (FP arithmetics, backport v1.0) or overflow, when gcd is small
228:                    // (a bug in backport v1.0_01 reported by Ramesh Nethi)
229:
230:                    return ((ctr / divisor) * multiplier) + (ctr % divisor)
231:                            * multiplier / divisor;
232:
233:                    // even the above can theoretically cause problems if your JVM is
234:                    // running for sufficiently long time, but "sufficiently" means 292
235:                    // years(worst case), or 30,000 years(common case).
236:
237:                    // Details: when the ticks ctr overflows, there is no way to avoid
238:                    // discontinuity in computed nanos, even in infinite arithmetics,
239:                    // unless we count number of overflows that the ctr went through
240:                    // since the JVM started. This follows from the fact that
241:                    // (2^64*multiplier/divisor) mod(2^64) > 0 in general case.
242:                    // Theoretically we could find out the number of overflows by
243:                    // checking System.currentTimeMillis(), but this is unreliable
244:                    // since the system time can unpredictably change during the JVM
245:                    // lifetime.
246:                    // The time to overflow is 2^63 / ticks frequency. With current
247:                    // ticks frequencies of several MHz, it gives about 30,000 years
248:                    // before the problem happens. If ticks frequency reaches 1 GHz, the
249:                    // time to overflow is 292 years. It is unlikely that the frequency
250:                    // ever exceeds 1 GHz. We could double the time to overflow
251:                    // (to 2^64 / frequency) by using unsigned arithmetics, e.g. by
252:                    // adding the following correction whenever the ticks is negative:
253:                    //      -2*((Long.MIN_VALUE / divisor) * multiplier +
254:                    //          (Long.MIN_VALUE % divisor) * multiplier / divisor)
255:                    // But, with the worst case of as much as 292 years, it does not
256:                    // seem justified.
257:                }
258:            }
259:
260:            private static final class MillisProvider implements  NanoTimer {
261:
262:                MillisProvider() {
263:                }
264:
265:                public long nanoTime() {
266:                    return System.currentTimeMillis() * 1000000;
267:                }
268:            }
269:
270:            private static long gcd(long a, long b) {
271:                long r;
272:                while (b > 0) {
273:                    r = a % b;
274:                    a = b;
275:                    b = r;
276:                }
277:                return a;
278:            }
279:
280:            public static Object[] collectionToArray(Collection c) {
281:                // guess the array size; expect to possibly be different
282:                int len = c.size();
283:                Object[] arr = new Object[len];
284:                Iterator itr = c.iterator();
285:                int idx = 0;
286:                while (true) {
287:                    while (idx < len && itr.hasNext()) {
288:                        arr[idx++] = itr.next();
289:                    }
290:                    if (!itr.hasNext()) {
291:                        if (idx == len)
292:                            return arr;
293:                        // otherwise have to trim
294:                        return Arrays.copyOf(arr, idx, Object[].class);
295:                    }
296:                    // otherwise, have to grow
297:                    int newcap = ((arr.length / 2) + 1) * 3;
298:                    if (newcap < arr.length) {
299:                        // overflow
300:                        if (arr.length < Integer.MAX_VALUE) {
301:                            newcap = Integer.MAX_VALUE;
302:                        } else {
303:                            throw new OutOfMemoryError(
304:                                    "required array size too large");
305:                        }
306:                    }
307:                    arr = Arrays.copyOf(arr, newcap, Object[].class);
308:                    len = newcap;
309:                }
310:            }
311:
312:            public static Object[] collectionToArray(Collection c, Object[] a) {
313:                Class aType = a.getClass();
314:                // guess the array size; expect to possibly be different
315:                int len = c.size();
316:                Object[] arr = (a.length >= len ? a : (Object[]) Array
317:                        .newInstance(aType.getComponentType(), len));
318:                Iterator itr = c.iterator();
319:                int idx = 0;
320:                while (true) {
321:                    while (idx < len && itr.hasNext()) {
322:                        arr[idx++] = itr.next();
323:                    }
324:                    if (!itr.hasNext()) {
325:                        if (idx == len)
326:                            return arr;
327:                        if (arr == a) {
328:                            // orig array -> null terminate
329:                            a[idx] = null;
330:                            return a;
331:                        } else {
332:                            // have to trim
333:                            return Arrays.copyOf(arr, idx, aType);
334:                        }
335:                    }
336:                    // otherwise, have to grow
337:                    int newcap = ((arr.length / 2) + 1) * 3;
338:                    if (newcap < arr.length) {
339:                        // overflow
340:                        if (arr.length < Integer.MAX_VALUE) {
341:                            newcap = Integer.MAX_VALUE;
342:                        } else {
343:                            throw new OutOfMemoryError(
344:                                    "required array size too large");
345:                        }
346:                    }
347:                    arr = Arrays.copyOf(arr, newcap, aType);
348:                    len = newcap;
349:                }
350:            }
351:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.