Source Code Cross Referenced for Sync.java in  » Cache » ehcache » net » sf » ehcache » constructs » concurrent » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Cache » ehcache » net.sf.ehcache.constructs.concurrent 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /**
002:         *  Copyright 2003-2007 Luck Consulting Pty Ltd
003:         *
004:         *  Licensed under the Apache License, Version 2.0 (the "License");
005:         *  you may not use this file except in compliance with the License.
006:         *  You may obtain a copy of the License at
007:         *
008:         *      http://www.apache.org/licenses/LICENSE-2.0
009:         *
010:         *  Unless required by applicable law or agreed to in writing, software
011:         *  distributed under the License is distributed on an "AS IS" BASIS,
012:         *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013:         *  See the License for the specific language governing permissions and
014:         *  limitations under the License.
015:         */package net.sf.ehcache.constructs.concurrent;
016:
017:        /**
018:         * @version $Id: Sync.java 519 2007-07-27 07:11:45Z gregluck $
019:         * @author Doug Lea
020:         * Main interface for locks, gates, and conditions.
021:         * <p/>
022:         * Sync objects isolate waiting and notification for particular
023:         * logical states, resource availability, events, and the like that are
024:         * shared across multiple threads. Use of Syncs sometimes
025:         * (but by no means always) adds flexibility and efficiency
026:         * compared to the use of plain java monitor methods
027:         * and locking, and are sometimes (but by no means always)
028:         * simpler to program with.
029:         * <p/>
030:         * <p/>
031:         * Most Syncs are intended to be used primarily (although
032:         * not exclusively) in  before/after constructions such as:
033:         * <pre>
034:         * class X {
035:         *   Sync gate;
036:         *   // ...
037:         * <p/>
038:         *   public void m() {
039:         *     try {
040:         *       gate.acquire();  // block until condition holds
041:         *       try {
042:         *         // ... method body
043:         *       }
044:         *       finally {
045:         *         gate.release()
046:         *       }
047:         *     }
048:         *     catch (InterruptedException ex) {
049:         *       // ... evasive action
050:         *     }
051:         *   }
052:         * <p/>
053:         *   public void m2(Sync cond) { // use supplied condition
054:         *     try {
055:         *       if (cond.attempt(10)) {         // try the condition for 10 ms
056:         *         try {
057:         *           // ... method body
058:         *         }
059:         *         finally {
060:         *           cond.release()
061:         *         }
062:         *       }
063:         *     }
064:         *     catch (InterruptedException ex) {
065:         *       // ... evasive action
066:         *     }
067:         *   }
068:         * }
069:         * </pre>
070:         * Syncs may be used in somewhat tedious but more flexible replacements
071:         * for built-in Java synchronized blocks. For example:
072:         * <pre>
073:         * class HandSynched {
074:         *   private double state_ = 0.0;
075:         *   private final Sync lock;  // use lock type supplied in constructor
076:         *   public HandSynched(Sync l) { lock = l; }
077:         * <p/>
078:         *   public void changeState(double d) {
079:         *     try {
080:         *       lock.acquire();
081:         *       try     { state_ = updateFunction(d); }
082:         *       finally { lock.release(); }
083:         *     }
084:         *     catch(InterruptedException ex) { }
085:         *   }
086:         * <p/>
087:         *   public double getState() {
088:         *     double d = 0.0;
089:         *     try {
090:         *       lock.acquire();
091:         *       try     { d = accessFunction(state_); }
092:         *       finally { lock.release(); }
093:         *     }
094:         *     catch(InterruptedException ex){}
095:         *     return d;
096:         *   }
097:         *   private double updateFunction(double d) { ... }
098:         *   private double accessFunction(double d) { ... }
099:         * }
100:         * </pre>
101:         * If you have a lot of such methods, and they take a common
102:         * form, you can standardize this using wrappers. Some of these
103:         * wrappers are standardized in LockedExecutor, but you can make others.
104:         * For example:
105:         * <pre>
106:         * class HandSynchedV2 {
107:         *   private double state_ = 0.0;
108:         *   private final Sync lock;  // use lock type supplied in constructor
109:         *   public HandSynchedV2(Sync l) { lock = l; }
110:         * <p/>
111:         *   protected void runSafely(Runnable r) {
112:         *     try {
113:         *       lock.acquire();
114:         *       try { r.run(); }
115:         *       finally { lock.release(); }
116:         *     }
117:         *     catch (InterruptedException ex) { // propagate without throwing
118:         *       Thread.currentThread().interrupt();
119:         *     }
120:         *   }
121:         * <p/>
122:         *   public void changeState(double d) {
123:         *     runSafely(new Runnable() {
124:         *       public void run() { state_ = updateFunction(d); }
125:         *     });
126:         *   }
127:         *   // ...
128:         * }
129:         * </pre>
130:         * <p/>
131:         * One reason to bother with such constructions is to use deadlock-
132:         * avoiding back-offs when dealing with locks involving multiple objects.
133:         * For example, here is a Cell class that uses attempt to back-off
134:         * and retry if two Cells are trying to swap values with each other
135:         * at the same time.
136:         * <pre>
137:         * class Cell {
138:         *   long value;
139:         *   Sync lock = ... // some sync implementation class
140:         *   void swapValue(Cell other) {
141:         *     for (;;) {
142:         *       try {
143:         *         lock.acquire();
144:         *         try {
145:         *           if (other.lock.attempt(100)) {
146:         *             try {
147:         *               long t = value;
148:         *               value = other.value;
149:         *               other.value = t;
150:         *               return;
151:         *             }
152:         *             finally { other.lock.release(); }
153:         *           }
154:         *         }
155:         *         finally { lock.release(); }
156:         *       }
157:         *       catch (InterruptedException ex) { return; }
158:         *     }
159:         *   }
160:         * }
161:         * </pre>
162:         * <p/>
163:         * Here is an even fancier version, that uses lock re-ordering
164:         * upon conflict:
165:         * <pre>
166:         * class Cell {
167:         *   long value;
168:         *   Sync lock = ...;
169:         *   private static boolean trySwap(Cell a, Cell b) {
170:         *     a.lock.acquire();
171:         *     try {
172:         *       if (!b.lock.attempt(0))
173:         *         return false;
174:         *       try {
175:         *         long t = a.value;
176:         *         a.value = b.value;
177:         *         b.value = t;
178:         *         return true;
179:         *       }
180:         *       finally { other.lock.release(); }
181:         *     }
182:         *     finally { lock.release(); }
183:         *     return false;
184:         *   }
185:         * <p/>
186:         *  void swapValue(Cell other) {
187:         *    try {
188:         *      while (!trySwap(this, other) &&
189:         *            !tryswap(other, this))
190:         *        Thread.sleep(1);
191:         *    }
192:         *    catch (InterruptedException ex) { return; }
193:         *  }
194:         * }
195:         * </pre>
196:         * <p/>
197:         * Interruptions are in general handled as early as possible.
198:         * Normally, InterruptionExceptions are thrown
199:         * in acquire and attempt(msec) if interruption
200:         * is detected upon entry to the method, as well as in any
201:         * later context surrounding waits.
202:         * However, interruption status is ignored in release();
203:         * <p/>
204:         * Timed versions of attempt report failure via return value.
205:         * If so desired, you can transform such constructions to use exception
206:         * throws via
207:         * <pre>
208:         *   if (!c.attempt(timeval)) throw new TimeoutException(timeval);
209:         * </pre>
210:         * <p/>
211:         * The TimoutSync wrapper class can be used to automate such usages.
212:         * <p/>
213:         * All time values are expressed in milliseconds as longs, which have a maximum
214:         * value of Long.MAX_VALUE, or almost 300,000 centuries. It is not
215:         * known whether JVMs actually deal correctly with such extreme values.
216:         * For convenience, some useful time values are defined as static constants.
217:         * <p/>
218:         * All implementations of the three Sync methods guarantee to
219:         * somehow employ Java <code>synchronized</code> methods or blocks,
220:         * and so entail the memory operations described in JLS
221:         * chapter 17 which ensure that variables are loaded and flushed
222:         * within before/after constructions.
223:         * <p/>
224:         * Syncs may also be used in spinlock constructions. Although
225:         * it is normally best to just use acquire(), various forms
226:         * of busy waits can be implemented. For a simple example
227:         * (but one that would probably never be preferable to using acquire()):
228:         * <pre>
229:         * class X {
230:         *   Sync lock = ...
231:         *   void spinUntilAcquired() throws InterruptedException {
232:         *     // Two phase.
233:         *     // First spin without pausing.
234:         *     int purespins = 10;
235:         *     for (int i = 0; i < purespins; ++i) {
236:         *       if (lock.attempt(0))
237:         *         return true;
238:         *     }
239:         *     // Second phase - use timed waits
240:         *     long waitTime = 1; // 1 millisecond
241:         *     for (;;) {
242:         *       if (lock.attempt(waitTime))
243:         *         return true;
244:         *       else
245:         *         waitTime = waitTime * 3 / 2 + 1; // increase 50%
246:         *     }
247:         *   }
248:         * }
249:         * </pre>
250:         * <p/>
251:         * In addition pure synchronization control, Syncs
252:         * may be useful in any context requiring before/after methods.
253:         * For example, you can use an ObservableSync
254:         * (perhaps as part of a LayeredSync) in order to obtain callbacks
255:         * before and after each method invocation for a given class.
256:         * <p/>
257:         * <p/>
258:         * <p>[<a href="http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html"> Introduction to this package. </a>]
259:         */
260:        public interface Sync {
261:            /**
262:             * One second, in milliseconds; convenient as a time-out value *
263:             */
264:            long ONE_SECOND = 1000;
265:
266:            /**
267:             * One minute, in milliseconds; convenient as a time-out value *
268:             */
269:            long ONE_MINUTE = 60 * ONE_SECOND;
270:
271:            /**
272:             * One hour, in milliseconds; convenient as a time-out value *
273:             */
274:            long ONE_HOUR = 60 * ONE_MINUTE;
275:
276:            /**
277:             * One day, in milliseconds; convenient as a time-out value *
278:             */
279:            long ONE_DAY = 24 * ONE_HOUR;
280:
281:            /**
282:             * One week, in milliseconds; convenient as a time-out value *
283:             */
284:            long ONE_WEEK = 7 * ONE_DAY;
285:
286:            /**
287:             * One year in milliseconds; convenient as a time-out value
288:             * Not that it matters, but there is some variation across
289:             * standard sources about value at msec precision.
290:             * The value used is the same as in java.util.GregorianCalendar
291:             */
292:            long ONE_YEAR = (long) (365.2425 * ONE_DAY);
293:
294:            /**
295:             * One century in milliseconds; convenient as a time-out value
296:             */
297:            long ONE_CENTURY = 100 * ONE_YEAR;
298:
299:            /**
300:             * Wait (possibly forever) until successful passage.
301:             * Fail only upon interuption. Interruptions always result in
302:             * `clean' failures. On failure,  you can be sure that it has not
303:             * been acquired, and that no
304:             * corresponding release should be performed. Conversely,
305:             * a normal return guarantees that the acquire was successful.
306:             */
307:            void acquire() throws InterruptedException;
308:
309:            /**
310:             * Wait at most msecs to pass; report whether passed.
311:             * <p/>
312:             * The method has best-effort semantics:
313:             * The msecs bound cannot
314:             * be guaranteed to be a precise upper bound on wait time in Java.
315:             * Implementations generally can only attempt to return as soon as possible
316:             * after the specified bound. Also, timers in Java do not stop during garbage
317:             * collection, so timeouts can occur just because a GC intervened.
318:             * So, msecs arguments should be used in
319:             * a coarse-grained manner. Further,
320:             * implementations cannot always guarantee that this method
321:             * will return at all without blocking indefinitely when used in
322:             * unintended ways. For example, deadlocks may be encountered
323:             * when called in an unintended context.
324:             * <p/>
325:             *
326:             * @param msecs the number of milleseconds to wait.
327:             *              An argument less than or equal to zero means not to wait at all.
328:             *              However, this may still require
329:             *              access to a synchronization lock, which can impose unbounded
330:             *              delay if there is a lot of contention among threads.
331:             * @return true if acquired
332:             */
333:            boolean attempt(long msecs) throws InterruptedException;
334:
335:            /**
336:             * Potentially enable others to pass.
337:             * <p/>
338:             * Because release does not raise exceptions,
339:             * it can be used in `finally' clauses without requiring extra
340:             * embedded try/catch blocks. But keep in mind that
341:             * as with any java method, implementations may
342:             * still throw unchecked exceptions such as Error or NullPointerException
343:             * when faced with uncontinuable errors. However, these should normally
344:             * only be caught by higher-level error handlers.
345:             */
346:            void release();
347:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.