Source Code Cross Referenced for GeometryUtil.java in  » Apache-Harmony-Java-SE » org-package » org » apache » harmony » awt » geom » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Apache Harmony Java SE » org package » org.apache.harmony.awt.geom 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *  Licensed to the Apache Software Foundation (ASF) under one or more
003:         *  contributor license agreements.  See the NOTICE file distributed with
004:         *  this work for additional information regarding copyright ownership.
005:         *  The ASF licenses this file to You under the Apache License, Version 2.0
006:         *  (the "License"); you may not use this file except in compliance with
007:         *  the License.  You may obtain a copy of the License at
008:         *
009:         *     http://www.apache.org/licenses/LICENSE-2.0
010:         *
011:         *  Unless required by applicable law or agreed to in writing, software
012:         *  distributed under the License is distributed on an "AS IS" BASIS,
013:         *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014:         *  See the License for the specific language governing permissions and
015:         *  limitations under the License.
016:         */
017:        package org.apache.harmony.awt.geom;
018:
019:        import org.apache.harmony.awt.gl.Crossing;
020:
021:        public class GeometryUtil {
022:            public static final double EPSILON = Math.pow(10, -14);
023:
024:            public static int intersectLinesWithParams(double x1, double y1,
025:                    double x2, double y2, double x3, double y3, double x4,
026:                    double y4, double[] params) {
027:                double dx = x4 - x3;
028:                double dy = y4 - y3;
029:                double d = dx * (y2 - y1) - dy * (x2 - x1);
030:                // double comparison
031:                if (Math.abs(d) < EPSILON) {
032:                    return 0;
033:                }
034:
035:                params[0] = (-dx * (y1 - y3) + dy * (x1 - x3)) / d;
036:
037:                if (dx != 0) {
038:                    params[1] = (line(params[0], x1, x2) - x3) / dx;
039:                } else if (dy != 0) {
040:                    params[1] = (line(params[0], y1, y2) - y3) / dy;
041:                } else {
042:                    params[1] = 0.0;
043:                }
044:
045:                if (params[0] >= 0 && params[0] <= 1 && params[1] >= 0
046:                        && params[1] <= 1) {
047:                    return 1;
048:                }
049:
050:                return 0;
051:            }
052:
053:            /**
054:             * The method checks up if line (x1, y1) - (x2, y2) and line (x3, y3) - (x4, y4)
055:             * intersect. If lines intersect then the result parameters are saved to point
056:             * array. The size of array point must be at least 2.
057:             * @returns the method returns 1 if two lines intersect in the defined interval,  
058:             * 			otherwise 0
059:             */
060:            public static int intersectLines(double x1, double y1, double x2,
061:                    double y2, double x3, double y3, double x4, double y4,
062:                    double[] point) {
063:                double A1 = -(y2 - y1);
064:                double B1 = (x2 - x1);
065:                double C1 = x1 * y2 - x2 * y1;
066:                double A2 = -(y4 - y3);
067:                double B2 = (x4 - x3);
068:                double C2 = x3 * y4 - x4 * y3;
069:                double coefParallel = A1 * B2 - A2 * B1;
070:                // double comparison
071:                if (x3 == x4 && y3 == y4 && (A1 * x3 + B1 * y3 + C1 == 0)
072:                        && (x3 >= Math.min(x1, x2)) && (x3 <= Math.max(x1, x2))
073:                        && (y3 >= Math.min(y1, y2)) && (y3 <= Math.max(y1, y2))) {
074:                    return 1;
075:                }
076:                if (Math.abs(coefParallel) < EPSILON) {
077:                    return 0;
078:                }
079:                point[0] = (B1 * C2 - B2 * C1) / coefParallel;
080:                point[1] = (A2 * C1 - A1 * C2) / coefParallel;
081:                if (point[0] >= Math.min(x1, x2)
082:                        && point[0] >= Math.min(x3, x4)
083:                        && point[0] <= Math.max(x1, x2)
084:                        && point[0] <= Math.max(x3, x4)
085:                        && point[1] >= Math.min(y1, y2)
086:                        && point[1] >= Math.min(y3, y4)
087:                        && point[1] <= Math.max(y1, y2)
088:                        && point[1] <= Math.max(y3, y4)) {
089:                    return 1;
090:                }
091:                return 0;
092:            }
093:
094:            /**
095:             * It checks up if there is intersection of the line (x1, y1) - (x2, y2) and
096:             * the quad curve (qx1, qy1) - (qx2, qy2) - (qx3, qy3). The parameters of the intersection
097:             * area saved to params array. Therefore the params size must be at learst 4.
098:             * @return The method returns the quantity of roots lied in the defined interval 
099:             */
100:            public static int intersectLineAndQuad(double x1, double y1,
101:                    double x2, double y2, double qx1, double qy1, double qx2,
102:                    double qy2, double qx3, double qy3, double[] params) {
103:                double[] eqn = new double[3];
104:                double[] t = new double[2];
105:                double[] s = new double[2];
106:                double dy = y2 - y1;
107:                double dx = x2 - x1;
108:                int quantity = 0;
109:                int count = 0;
110:
111:                eqn[0] = dy * (qx1 - x1) - dx * (qy1 - y1);
112:                eqn[1] = 2 * dy * (qx2 - qx1) - 2 * dx * (qy2 - qy1);
113:                eqn[2] = dy * (qx1 - 2 * qx2 + qx3) - dx
114:                        * (qy1 - 2 * qy2 + qy3);
115:
116:                if ((count = Crossing.solveQuad(eqn, t)) == 0) {
117:                    return 0;
118:                }
119:
120:                for (int i = 0; i < count; i++) {
121:                    if (dx != 0) {
122:                        s[i] = (quad(t[i], qx1, qx2, qx3) - x1) / dx;
123:                    } else if (dy != 0) {
124:                        s[i] = (quad(t[i], qy1, qy2, qy3) - y1) / dy;
125:                    } else {
126:                        s[i] = 0.0;
127:                    }
128:                    if (t[i] >= 0 && t[i] <= 1 && s[i] >= 0 && s[i] <= 1) {
129:                        params[2 * quantity] = t[i];
130:                        params[2 * quantity + 1] = s[i];
131:                        ++quantity;
132:                    }
133:                }
134:
135:                return quantity;
136:            }
137:
138:            /**
139:             * It checks up if the line (x1, y1) - (x2, y2) and
140:             * the cubic curve (cx1, cy1) - (cx2, cy2) - (cx3, cy3) - (cx4, cy4). 
141:             * The points of the intersection is saved to points array. 
142:             * Therefore the points size must be at learst 6. 
143:             * @return The method returns the quantity of roots lied in the defined interval 
144:             */
145:            public static int intersectLineAndCubic(double x1, double y1,
146:                    double x2, double y2, double cx1, double cy1, double cx2,
147:                    double cy2, double cx3, double cy3, double cx4, double cy4,
148:                    double[] params) {
149:                double[] eqn = new double[4];
150:                double[] t = new double[3];
151:                double[] s = new double[3];
152:                double dy = y2 - y1;
153:                double dx = x2 - x1;
154:                int quantity = 0;
155:                int count = 0;
156:
157:                eqn[0] = (cy1 - y1) * dx + (x1 - cx1) * dy;
158:                eqn[1] = -3 * (cy1 - cy2) * dx + 3 * (cx1 - cx2) * dy;
159:                eqn[2] = (3 * cy1 - 6 * cy2 + 3 * cy3) * dx
160:                        - (3 * cx1 - 6 * cx2 + 3 * cx3) * dy;
161:                eqn[3] = (-3 * cy1 + 3 * cy2 - 3 * cy3 + cy4) * dx
162:                        + (3 * cx1 - 3 * cx2 + 3 * cx3 - cx4) * dy;
163:
164:                if ((count = Crossing.solveCubic(eqn, t)) == 0) {
165:                    return 0;
166:                }
167:
168:                for (int i = 0; i < count; i++) {
169:                    if (dx != 0) {
170:                        s[i] = (cubic(t[i], cx1, cx2, cx3, cx4) - x1) / dx;
171:                    } else if (dy != 0) {
172:                        s[i] = (cubic(t[i], cy1, cy2, cy3, cy4) - y1) / dy;
173:                    } else {
174:                        s[i] = 0.0;
175:                    }
176:                    if (t[i] >= 0 && t[i] <= 1 && s[i] >= 0 && s[i] <= 1) {
177:                        params[2 * quantity] = t[i];
178:                        params[2 * quantity + 1] = s[i];
179:                        ++quantity;
180:                    }
181:                }
182:
183:                return quantity;
184:            }
185:
186:            /**
187:             * The method checks up if two quads (x1, y1) - (x2, y2) - (x3, y3) and 
188:             * (qx1, qy1) - (qx2, qy2) - (qx3, qy3) intersect. The result is saved to 
189:             * point array. Size of points should be at learst 4. 
190:             * @return the method returns the quantity of roots lied in the interval
191:             */
192:            public static int intersectQuads(double x1, double y1, double x2,
193:                    double y2, double x3, double y3, double qx1, double qy1,
194:                    double qx2, double qy2, double qx3, double qy3,
195:                    double[] params) {
196:
197:                double[] initParams = new double[2];
198:                double[] xCoefs1 = new double[3];
199:                double[] yCoefs1 = new double[3];
200:                double[] xCoefs2 = new double[3];
201:                double[] yCoefs2 = new double[3];
202:                int quantity = 0;
203:
204:                xCoefs1[0] = x1 - 2 * x2 + x3;
205:                xCoefs1[1] = -2 * x1 + 2 * x2;
206:                xCoefs1[2] = x1;
207:
208:                yCoefs1[0] = y1 - 2 * y2 + y3;
209:                yCoefs1[1] = -2 * y1 + 2 * y2;
210:                yCoefs1[2] = y1;
211:
212:                xCoefs2[0] = qx1 - 2 * qx2 + qx3;
213:                xCoefs2[1] = -2 * qx1 + 2 * qx2;
214:                xCoefs2[2] = qx1;
215:
216:                yCoefs2[0] = qy1 - 2 * qy2 + qy3;
217:                yCoefs2[1] = -2 * qy1 + 2 * qy2;
218:                yCoefs2[2] = qy1;
219:
220:                // initialize params[0] and params[1]
221:                params[0] = params[1] = 0.25;
222:                quadNewton(xCoefs1, yCoefs1, xCoefs2, yCoefs2, initParams);
223:                if (initParams[0] <= 1 && initParams[0] >= 0
224:                        && initParams[1] >= 0 && initParams[1] <= 1) {
225:                    params[2 * quantity] = initParams[0];
226:                    params[2 * quantity + 1] = initParams[1];
227:                    ++quantity;
228:                }
229:                // initialize params
230:                params[0] = params[1] = 0.75;
231:                quadNewton(xCoefs1, yCoefs1, xCoefs2, yCoefs2, params);
232:                if (initParams[0] <= 1 && initParams[0] >= 0
233:                        && initParams[1] >= 0 && initParams[1] <= 1) {
234:                    params[2 * quantity] = initParams[0];
235:                    params[2 * quantity + 1] = initParams[1];
236:                    ++quantity;
237:                }
238:
239:                return quantity;
240:            }
241:
242:            /**
243:             * It checks up if the quad (x1, y1) - (x2, y2) - (x3, y3) and
244:             * the cubic (cx1, cy1) - (cx2, cy2) - (cx3, cy3) - (cx4, cy4) curves intersect. 
245:             * The points of the intersection is saved to points array. 
246:             * The points size should be at learst 6. 
247:             * @return The method returns the quantity of the intersection points 
248:             * 		   lied in the interval. 
249:             */
250:            public static int intersectQuadAndCubic(double qx1, double qy1,
251:                    double qx2, double qy2, double qx3, double qy3, double cx1,
252:                    double cy1, double cx2, double cy2, double cx3, double cy3,
253:                    double cx4, double cy4, double[] params) {
254:                int quantity = 0;
255:                double[] initParams = new double[3];
256:                double[] xCoefs1 = new double[3];
257:                double[] yCoefs1 = new double[3];
258:                double[] xCoefs2 = new double[4];
259:                double[] yCoefs2 = new double[4];
260:                xCoefs1[0] = qx1 - 2 * qx2 + qx3;
261:                xCoefs1[1] = 2 * qx2 - 2 * qx1;
262:                xCoefs1[2] = qx1;
263:
264:                yCoefs1[0] = qy1 - 2 * qy2 + qy3;
265:                yCoefs1[1] = 2 * qy2 - 2 * qy1;
266:                yCoefs1[2] = qy1;
267:
268:                xCoefs2[0] = -cx1 + 3 * cx2 - 3 * cx3 + cx4;
269:                xCoefs2[1] = 3 * cx1 - 6 * cx2 + 3 * cx3;
270:                xCoefs2[2] = -3 * cx1 + 3 * cx2;
271:                xCoefs2[3] = cx1;
272:
273:                yCoefs2[0] = -cy1 + 3 * cy2 - 3 * cy3 + cy4;
274:                yCoefs2[1] = 3 * cy1 - 6 * cy2 + 3 * cy3;
275:                yCoefs2[2] = -3 * cy1 + 3 * cy2;
276:                yCoefs2[3] = cy1;
277:
278:                // initialize params[0] and params[1]
279:                params[0] = params[1] = 0.25;
280:                quadAndCubicNewton(xCoefs1, yCoefs1, xCoefs2, yCoefs2,
281:                        initParams);
282:                if (initParams[0] <= 1 && initParams[0] >= 0
283:                        && initParams[1] >= 0 && initParams[1] <= 1) {
284:                    params[2 * quantity] = initParams[0];
285:                    params[2 * quantity + 1] = initParams[1];
286:                    ++quantity;
287:                }
288:                // initialize params
289:                params[0] = params[1] = 0.5;
290:                quadAndCubicNewton(xCoefs1, yCoefs1, xCoefs2, yCoefs2, params);
291:                if (initParams[0] <= 1 && initParams[0] >= 0
292:                        && initParams[1] >= 0 && initParams[1] <= 1) {
293:                    params[2 * quantity] = initParams[0];
294:                    params[2 * quantity + 1] = initParams[1];
295:                    ++quantity;
296:                }
297:
298:                params[0] = params[1] = 0.75;
299:                quadAndCubicNewton(xCoefs1, yCoefs1, xCoefs2, yCoefs2, params);
300:                if (initParams[0] <= 1 && initParams[0] >= 0
301:                        && initParams[1] >= 0 && initParams[1] <= 1) {
302:                    params[2 * quantity] = initParams[0];
303:                    params[2 * quantity + 1] = initParams[1];
304:                    ++quantity;
305:                }
306:                return quantity;
307:            }
308:
309:            /**
310:             * The method checks up if two cubic curves (x1, y1) - (x2, y2) - (x3, y3) - (x4, y4) 
311:             * and (cx1, cy1) - (cx2, cy2) - (cx3, cy3) - (cx4, cy4) intersect. The result is saved to 
312:             * point array. Size of points should be at learst 6. 
313:             * @return the method returns the quantity of the intersection points lied in the interval
314:             */
315:            public static int intersectCubics(double x1, double y1, double x2,
316:                    double y2, double x3, double y3, double x4, double y4,
317:                    double cx1, double cy1, double cx2, double cy2, double cx3,
318:                    double cy3, double cx4, double cy4, double[] params) {
319:
320:                int quantity = 0;
321:                double[] initParams = new double[3];
322:                double[] xCoefs1 = new double[4];
323:                double[] yCoefs1 = new double[4];
324:                double[] xCoefs2 = new double[4];
325:                double[] yCoefs2 = new double[4];
326:                xCoefs1[0] = -x1 + 3 * x2 - 3 * x3 + x4;
327:                xCoefs1[1] = 3 * x1 - 6 * x2 + 3 * x3;
328:                xCoefs1[2] = -3 * x1 + 3 * x2;
329:                xCoefs1[3] = x1;
330:
331:                yCoefs1[0] = -y1 + 3 * y2 - 3 * y3 + y4;
332:                yCoefs1[1] = 3 * y1 - 6 * y2 + 3 * y3;
333:                yCoefs1[2] = -3 * y1 + 3 * y2;
334:                yCoefs1[3] = y1;
335:
336:                xCoefs2[0] = -cx1 + 3 * cx2 - 3 * cx3 + cx4;
337:                xCoefs2[1] = 3 * cx1 - 6 * cx2 + 3 * cx3;
338:                xCoefs2[2] = -3 * cx1 + 3 * cx2;
339:                xCoefs2[3] = cx1;
340:
341:                yCoefs2[0] = -cy1 + 3 * cy2 - 3 * cy3 + cy4;
342:                yCoefs2[1] = 3 * cy1 - 6 * cy2 + 3 * cy3;
343:                yCoefs2[2] = -3 * cy1 + 3 * cy2;
344:                yCoefs2[3] = cy1;
345:
346:                // TODO
347:                params[0] = params[1] = 0.25;
348:                cubicNewton(xCoefs1, yCoefs1, xCoefs2, yCoefs2, initParams);
349:                if (initParams[0] <= 1 && initParams[0] >= 0
350:                        && initParams[1] >= 0 && initParams[1] <= 1) {
351:                    params[2 * quantity] = initParams[0];
352:                    params[2 * quantity + 1] = initParams[1];
353:                    ++quantity;
354:                }
355:
356:                params[0] = params[1] = 0.5;
357:                cubicNewton(xCoefs1, yCoefs1, xCoefs2, yCoefs2, params);
358:                if (initParams[0] <= 1 && initParams[0] >= 0
359:                        && initParams[1] >= 0 && initParams[1] <= 1) {
360:                    params[2 * quantity] = initParams[0];
361:                    params[2 * quantity + 1] = initParams[1];
362:                    ++quantity;
363:                }
364:
365:                params[0] = params[1] = 0.75;
366:                cubicNewton(xCoefs1, yCoefs1, xCoefs2, yCoefs2, params);
367:                if (initParams[0] <= 1 && initParams[0] >= 0
368:                        && initParams[1] >= 0 && initParams[1] <= 1) {
369:                    params[2 * quantity] = initParams[0];
370:                    params[2 * quantity + 1] = initParams[1];
371:                    ++quantity;
372:                }
373:                return quantity;
374:            }
375:
376:            public static double line(double t, double x1, double x2) {
377:                return x1 * (1.0 - t) + x2 * t;
378:            }
379:
380:            public static double quad(double t, double x1, double x2, double x3) {
381:                return x1 * (1.0 - t) * (1.0 - t) + 2.0 * x2 * t * (1.0 - t)
382:                        + x3 * t * t;
383:            }
384:
385:            public static double cubic(double t, double x1, double x2,
386:                    double x3, double x4) {
387:                return x1 * (1.0 - t) * (1.0 - t) * (1.0 - t) + 3.0 * x2
388:                        * (1.0 - t) * (1.0 - t) * t + 3.0 * x3 * (1.0 - t) * t
389:                        * t + x4 * t * t * t;
390:            }
391:
392:            // x, y - the coordinates of new vertex
393:            // t0 - ?
394:            public static void subQuad(double coef[], double t0, boolean left) {
395:                if (left) {
396:                    coef[2] = (1 - t0) * coef[0] + t0 * coef[2];
397:                    coef[3] = (1 - t0) * coef[1] + t0 * coef[3];
398:                } else {
399:                    coef[2] = (1 - t0) * coef[2] + t0 * coef[4];
400:                    coef[3] = (1 - t0) * coef[3] + t0 * coef[5];
401:                }
402:            }
403:
404:            public static void subCubic(double coef[], double t0, boolean left) {
405:                if (left) {
406:                    coef[2] = (1 - t0) * coef[0] + t0 * coef[2];
407:                    coef[3] = (1 - t0) * coef[1] + t0 * coef[3];
408:                } else {
409:                    coef[4] = (1 - t0) * coef[4] + t0 * coef[6];
410:                    coef[5] = (1 - t0) * coef[5] + t0 * coef[7];
411:                }
412:            }
413:
414:            private static void cubicNewton(double xCoefs1[], double yCoefs1[],
415:                    double xCoefs2[], double yCoefs2[], double[] params) {
416:                double t = 0.0, s = 0.0;
417:                double t1 = params[0];
418:                double s1 = params[1];
419:                double d, dt, ds;
420:
421:                while (Math.sqrt((t - t1) * (t - t1) + (s - s1) * (s - s1)) > EPSILON) {
422:                    d = -(3 * t * t * xCoefs1[0] + 2 * t * xCoefs1[1] + xCoefs1[2])
423:                            * (3 * s * s * yCoefs2[0] + 2 * s * yCoefs2[1] + yCoefs2[2])
424:                            + (3 * t * t * yCoefs1[0] + 2 * t * yCoefs1[1] + yCoefs1[2])
425:                            * (3 * s * s * xCoefs2[0] + 2 * s * xCoefs2[1] + xCoefs2[2]);
426:
427:                    dt = (t * t * t * xCoefs1[0] + t * t * xCoefs1[1] + t
428:                            * xCoefs1[2] + xCoefs1[3] - s * s * s * xCoefs2[0]
429:                            - s * s * xCoefs2[1] - s * xCoefs2[2] - xCoefs2[3])
430:                            * (-3 * s * s * yCoefs2[0] - 2 * s * yCoefs2[1] - yCoefs2[2])
431:                            + (t * t * t * yCoefs1[0] + t * t * yCoefs1[1] + t
432:                                    * yCoefs1[2] + yCoefs1[3] - s * s * s
433:                                    * yCoefs2[0] - s * s * yCoefs2[1] - s
434:                                    * yCoefs2[2] - yCoefs2[3])
435:                            * (3 * s * s * xCoefs2[0] + 2 * s * xCoefs2[1] + xCoefs2[2]);
436:
437:                    ds = (3 * t * t * xCoefs1[0] + 2 * t * xCoefs1[1] + xCoefs1[2])
438:                            * (t * t * t * yCoefs1[0] + t * t * yCoefs1[1] + t
439:                                    * yCoefs1[2] + yCoefs1[3] - s * s * s
440:                                    * yCoefs2[0] - s * s * yCoefs2[1] - s
441:                                    * yCoefs2[2] - yCoefs2[3])
442:                            - (3 * t * t * yCoefs1[0] + 2 * t * yCoefs1[1] + yCoefs1[2])
443:                            * (t * t * t * xCoefs1[0] + t * t * xCoefs1[1] + t
444:                                    * xCoefs1[2] + xCoefs1[3] - s * s * s
445:                                    * xCoefs2[0] - s * s * xCoefs2[1] - s
446:                                    * xCoefs2[2] - xCoefs2[3]);
447:
448:                    t1 = t - dt / d;
449:                    s1 = s - ds / d;
450:                }
451:                params[0] = t1;
452:                params[1] = s1;
453:            }
454:
455:            private static void quadAndCubicNewton(double xCoefs1[],
456:                    double yCoefs1[], double xCoefs2[], double yCoefs2[],
457:                    double[] params) {
458:                double t = 0.0, s = 0.0;
459:                double t1 = params[0];
460:                double s1 = params[1];
461:                double d, dt, ds;
462:
463:                while (Math.sqrt((t - t1) * (t - t1) + (s - s1) * (s - s1)) > EPSILON) {
464:                    d = -(2 * t * xCoefs1[0] + xCoefs1[1])
465:                            * (3 * s * s * yCoefs2[0] + 2 * s * yCoefs2[1] + yCoefs2[2])
466:                            + (2 * t * yCoefs1[0] + yCoefs1[1])
467:                            * (3 * s * s * xCoefs2[0] + 2 * s * xCoefs2[1] + xCoefs2[2]);
468:
469:                    dt = (t * t * xCoefs1[0] + t * xCoefs1[1] + xCoefs1[2] + -s
470:                            * s * s * xCoefs2[0] - s * s * xCoefs2[1] - s
471:                            * xCoefs2[2] - xCoefs2[3])
472:                            * (-3 * s * s * yCoefs2[0] - 2 * s * yCoefs2[1] - yCoefs2[2])
473:                            + (t * t * yCoefs1[0] + t * yCoefs1[1] + yCoefs1[2]
474:                                    - s * s * s * yCoefs2[0] - s * s
475:                                    * yCoefs2[1] - s * yCoefs2[2] - yCoefs2[3])
476:                            * (3 * s * s * xCoefs2[0] + 2 * s * xCoefs2[1] + xCoefs2[2]);
477:
478:                    ds = (2 * t * xCoefs1[0] + xCoefs1[1])
479:                            * (t * t * yCoefs1[0] + t * yCoefs1[1] + yCoefs1[2]
480:                                    - s * s * s * yCoefs2[0] - s * s
481:                                    * yCoefs2[1] - s * yCoefs2[2] - yCoefs2[3])
482:                            - (2 * t * yCoefs1[0] + yCoefs1[1])
483:                            * (t * t * xCoefs1[0] + t * xCoefs1[1] + xCoefs1[2]
484:                                    - s * s * s * xCoefs2[0] - s * s
485:                                    * xCoefs2[1] - s * xCoefs2[2] - xCoefs2[3]);
486:
487:                    t1 = t - dt / d;
488:                    s1 = s - ds / d;
489:                }
490:                params[0] = t1;
491:                params[1] = s1;
492:            }
493:
494:            private static void quadNewton(double xCoefs1[], double yCoefs1[],
495:                    double xCoefs2[], double yCoefs2[], double params[]) {
496:                double t = 0.0, s = 0.0;
497:                double t1 = params[0];
498:                double s1 = params[1];
499:                double d, dt, ds;
500:
501:                while (Math.sqrt((t - t1) * (t - t1) + (s - s1) * (s - s1)) > EPSILON) {
502:                    t = t1;
503:                    s = s1;
504:                    d = -(2 * t * xCoefs1[0] + xCoefs1[1])
505:                            * (2 * s * yCoefs2[0] + yCoefs2[1])
506:                            + (2 * s * xCoefs2[0] + xCoefs2[1])
507:                            * (2 * t * yCoefs1[0] + yCoefs1[1]);
508:
509:                    dt = -(t * t * xCoefs1[0] + t * xCoefs1[1] + xCoefs1[1] - s
510:                            * s * xCoefs2[0] - s * xCoefs2[1] - xCoefs2[2])
511:                            * (2 * s * yCoefs2[0] + yCoefs2[1])
512:                            + (2 * s * xCoefs2[0] + xCoefs2[1])
513:                            * (t * t * yCoefs1[0] + t * yCoefs1[1] + yCoefs1[2]
514:                                    - s * s * yCoefs2[0] - s * yCoefs2[1] - yCoefs2[2]);
515:
516:                    ds = (2 * t * xCoefs1[0] + xCoefs1[1])
517:                            * (t * t * yCoefs1[0] + t * yCoefs1[1] + yCoefs1[2]
518:                                    - s * s * yCoefs2[0] - s * yCoefs2[1] - yCoefs2[2])
519:                            - (2 * t * yCoefs1[0] + yCoefs1[1])
520:                            * (t * t * xCoefs1[0] + t * xCoefs1[1] + xCoefs1[2]
521:                                    - s * s * xCoefs2[0] - s * xCoefs2[1] - xCoefs2[2]);
522:
523:                    t1 = t - dt / d;
524:                    s1 = s - ds / d;
525:                }
526:                params[0] = t1;
527:                params[1] = s1;
528:            }
529:
530:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.