Source Code Cross Referenced for ArbROIMaskGenerator.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » jj2000 » j2k » roi » encoder » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » jj2000.j2k.roi.encoder 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: ArbROIMaskGenerator.java,v $
003:         * $Revision: 1.1 $
004:         * $Date: 2005/02/11 05:02:22 $
005:         * $State: Exp $
006:         *
007:         * Class:                   ArbROIMaskGenerator
008:         *
009:         * Description:             Generates masks when only rectangular ROIs exist
010:         *
011:         *
012:         *
013:         * COPYRIGHT:
014:         *
015:         * This software module was originally developed by Raphaël Grosbois and
016:         * Diego Santa Cruz (Swiss Federal Institute of Technology-EPFL); Joel
017:         * Askelöf (Ericsson Radio Systems AB); and Bertrand Berthelot, David
018:         * Bouchard, Félix Henry, Gerard Mozelle and Patrice Onno (Canon Research
019:         * Centre France S.A) in the course of development of the JPEG2000
020:         * standard as specified by ISO/IEC 15444 (JPEG 2000 Standard). This
021:         * software module is an implementation of a part of the JPEG 2000
022:         * Standard. Swiss Federal Institute of Technology-EPFL, Ericsson Radio
023:         * Systems AB and Canon Research Centre France S.A (collectively JJ2000
024:         * Partners) agree not to assert against ISO/IEC and users of the JPEG
025:         * 2000 Standard (Users) any of their rights under the copyright, not
026:         * including other intellectual property rights, for this software module
027:         * with respect to the usage by ISO/IEC and Users of this software module
028:         * or modifications thereof for use in hardware or software products
029:         * claiming conformance to the JPEG 2000 Standard. Those intending to use
030:         * this software module in hardware or software products are advised that
031:         * their use may infringe existing patents. The original developers of
032:         * this software module, JJ2000 Partners and ISO/IEC assume no liability
033:         * for use of this software module or modifications thereof. No license
034:         * or right to this software module is granted for non JPEG 2000 Standard
035:         * conforming products. JJ2000 Partners have full right to use this
036:         * software module for his/her own purpose, assign or donate this
037:         * software module to any third party and to inhibit third parties from
038:         * using this software module for non JPEG 2000 Standard conforming
039:         * products. This copyright notice must be included in all copies or
040:         * derivative works of this software module.
041:         *
042:         * Copyright (c) 1999/2000 JJ2000 Partners.
043:         * */
044:        package jj2000.j2k.roi.encoder;
045:
046:        import jj2000.j2k.quantization.quantizer.*;
047:        import jj2000.j2k.codestream.writer.*;
048:        import jj2000.j2k.wavelet.analysis.*;
049:        import jj2000.j2k.quantization.*;
050:        import jj2000.j2k.image.input.*;
051:        import jj2000.j2k.wavelet.*;
052:        import jj2000.j2k.image.*;
053:        import jj2000.j2k.util.*;
054:        import jj2000.j2k.roi.*;
055:
056:        /**
057:         * This class generates the ROI bit-mask when, at least, one ROI is not
058:         * rectangular. In this case, the fast ROI bit-mask algorithm generation can
059:         * not be used.
060:         *
061:         * <P>The values are calculated from the scaling factors of the ROIs. The
062:         * values with which to scale are equal to u-umin where umin is the lowest
063:         * scaling factor within the block. The umin value is sent to the entropy
064:         * coder to be used for scaling the distortion values.
065:         *
066:         * @see ROIMaskGenerator
067:         *
068:         * @see ArbROIMaskGenerator
069:         * */
070:        public class ArbROIMaskGenerator extends ROIMaskGenerator {
071:
072:            /** The source of quantized wavelet transform coefficients */
073:            private Quantizer src;
074:
075:            /** The ROI mask for the current tile for all components*/
076:            private int[][] roiMask;
077:
078:            /** The low frequency part of a mask line */
079:            private int[] maskLineLow;
080:
081:            /** The High frequency part of a mask line */
082:            private int[] maskLineHigh;
083:
084:            /** A line or column of the mask with padding  */
085:            private int[] paddedMaskLine;
086:
087:            /** Flag indicating if any ROI was found to be in this tile */
088:            private boolean roiInTile;
089:
090:            /**
091:             * The constructor of the arbitrary mask generator
092:             *
093:             * @param rois The ROI info.
094:             *
095:             * @param nrc The number of components
096:             *
097:             * @param src The quantizer module
098:             * */
099:            public ArbROIMaskGenerator(ROI[] rois, int nrc, Quantizer src) {
100:                super (rois, nrc);
101:                roiMask = new int[nrc][];
102:                this .src = src;
103:            }
104:
105:            /**
106:             * This functions gets a DataBlk the size of the current code-block an
107:             * fills this block with the ROI mask.
108:             *
109:             * <P> In order to get the mask for a particular Subband, the subband tree
110:             * is traversed and at each decomposition, the ROI masks are computed.
111:             *
112:             * <P> The widths of the synthesis filters corresponding to the wavelet
113:             * filters used in the wavelet transform are used to expand the ROI masks
114:             * in the decompositions.
115:             *
116:             * @param db The data block that is to be filled with the mask
117:             *
118:             * @param sb The root of the subband tree to which db belongs
119:             *
120:             * @param magbits The max number of magnitude bits in any code-block
121:             *
122:             * @param c The number of the component
123:             *
124:             * @return Whether or not a mask was needed for this tile
125:             **/
126:            public boolean getROIMask(DataBlkInt db, Subband sb, int magbits,
127:                    int c) {
128:                int x = db.ulx;
129:                int y = db.uly;
130:                int w = db.w;
131:                int h = db.h;
132:                int tilew = sb.w;
133:                int tileh = sb.h;
134:                int[] maskData = (int[]) db.getData();
135:                int i, j, k, bi, wrap;
136:
137:                // If the ROI mask has not been calculated for this tile and
138:                // component, do so now.
139:                if (!tileMaskMade[c]) {
140:                    makeMask(sb, magbits, c);
141:                    tileMaskMade[c] = true;
142:                }
143:                if (!roiInTile)
144:                    return false;
145:
146:                int[] mask = roiMask[c]; // local copy
147:
148:                // Copy relevant part of the ROI mask to the datablock
149:                i = (y + h - 1) * tilew + x + w - 1;
150:                bi = w * h - 1;
151:                wrap = tilew - w;
152:                for (j = h; j > 0; j--) {
153:                    for (k = w; k > 0; k--, i--, bi--) {
154:                        maskData[bi] = mask[i];
155:                    }
156:                    i -= wrap;
157:                }
158:                return true;
159:
160:            }
161:
162:            /**
163:             * This function returns the relevant data of the mask generator
164:             * */
165:            public String toString() {
166:                return ("Fast rectangular ROI mask generator");
167:            }
168:
169:            /**
170:             * This function generates the ROI mask for one tile-component.
171:             *
172:             * <P> Once the mask is generated in the pixel domain. it is decomposed
173:             * following the same decomposition scheme as the wavelet transform.
174:             *
175:             * @param sb The root of the subband tree used in the decomposition
176:             *
177:             * @param magbits The max number of magnitude bits in any code-block
178:             *
179:             * @param c component number
180:             */
181:            public void makeMask(Subband sb, int magbits, int c) {
182:                int mask[]; // local copy
183:                ROI rois[] = this .rois; // local copy
184:                int i, j, k, r, mink, minj, maxj;
185:                int lrx, lry;
186:                int x, y, w, h;
187:                int cx, cy, rad;
188:                int wrap;
189:                int curScalVal;
190:                int tileulx = sb.ulcx;
191:                int tileuly = sb.ulcy;
192:                int tilew = sb.w;
193:                int tileh = sb.h;
194:                int lineLen = (tilew > tileh) ? tilew : tileh;
195:
196:                // Make sure there is a sufficiently large mask buffer
197:                if (roiMask[c] == null || (roiMask[c].length < (tilew * tileh))) {
198:                    roiMask[c] = new int[tilew * tileh];
199:                    mask = roiMask[c];
200:                } else {
201:                    mask = roiMask[c];
202:                    for (i = tilew * tileh - 1; i >= 0; i--)
203:                        mask[i] = 0;
204:                }
205:
206:                // Make sure there are sufficiently large line buffers
207:                if (maskLineLow == null
208:                        || (maskLineLow.length < (lineLen + 1) / 2))
209:                    maskLineLow = new int[(lineLen + 1) / 2];
210:                if (maskLineHigh == null
211:                        || (maskLineHigh.length < (lineLen + 1) / 2))
212:                    maskLineHigh = new int[(lineLen + 1) / 2];
213:
214:                roiInTile = false;
215:                // Generate ROIs in pixel domain:
216:                for (r = rois.length - 1; r >= 0; r--) {
217:                    if (rois[r].comp == c) {
218:                        curScalVal = magbits;
219:
220:                        if (rois[r].arbShape) {
221:                            ImgReaderPGM maskPGM = rois[r].maskPGM; // Local copy
222:
223:                            if ((src.getImgWidth() != maskPGM.getImgWidth())
224:                                    || (src.getImgHeight() != maskPGM
225:                                            .getImgHeight()))
226:                                throw new IllegalArgumentException(
227:                                        "Input image and" + " ROI mask must "
228:                                                + "have the same " + "size");
229:                            x = src.getImgULX();
230:                            y = src.getImgULY();
231:                            lrx = x + src.getImgWidth() - 1;
232:                            lry = y + src.getImgHeight() - 1;
233:                            if ((x > tileulx + tilew) || (y > tileuly + tileh)
234:                                    || (lrx < tileulx) || (lry < tileuly)) // Roi not in tile
235:                                continue;
236:
237:                            // Check bounds
238:                            x -= tileulx;
239:                            lrx -= tileulx;
240:                            y -= tileuly;
241:                            lry -= tileuly;
242:
243:                            int offx = 0;
244:                            int offy = 0;
245:                            if (x < 0) {
246:                                offx = -x;
247:                                x = 0;
248:                            }
249:                            if (y < 0) {
250:                                offy = -y;
251:                                y = 0;
252:                            }
253:                            w = (lrx > (tilew - 1)) ? tilew - x : lrx + 1 - x;
254:                            h = (lry > (tileh - 1)) ? tileh - y : lry + 1 - y;
255:
256:                            // Get shape line by line to reduce memory
257:                            DataBlkInt srcblk = new DataBlkInt();
258:                            int mDcOff = -ImgReaderPGM.DC_OFFSET;
259:                            int nROIcoeff = 0;
260:                            int[] src_data;
261:                            srcblk.ulx = offx;
262:                            srcblk.w = w;
263:                            srcblk.h = 1;
264:
265:                            i = (y + h - 1) * tilew + x + w - 1;
266:                            maxj = w;
267:                            wrap = tilew - maxj;
268:                            for (k = h; k > 0; k--) {
269:                                srcblk.uly = offy + k - 1;
270:                                srcblk = (DataBlkInt) maskPGM
271:                                        .getInternCompData(srcblk, 0);
272:                                src_data = srcblk.getDataInt();
273:
274:                                for (j = maxj; j > 0; j--, i--) {
275:                                    if (src_data[j - 1] != mDcOff) {
276:                                        mask[i] = curScalVal;
277:                                        nROIcoeff++;
278:                                    }
279:                                }
280:                                i -= wrap;
281:                            }
282:
283:                            if (nROIcoeff != 0) {
284:                                roiInTile = true;
285:                            }
286:                        } else if (rois[r].rect) { // Rectangular ROI
287:                            x = rois[r].ulx;
288:                            y = rois[r].uly;
289:                            lrx = rois[r].w + x - 1;
290:                            lry = rois[r].h + y - 1;
291:
292:                            if ((x > tileulx + tilew) || (y > tileuly + tileh)
293:                                    || (lrx < tileulx) || (lry < tileuly)) // Roi not in tile
294:                                continue;
295:
296:                            roiInTile = true;
297:
298:                            // Check bounds
299:                            x -= tileulx;
300:                            lrx -= tileulx;
301:                            y -= tileuly;
302:                            lry -= tileuly;
303:
304:                            x = (x < 0) ? 0 : x;
305:                            y = (y < 0) ? 0 : y;
306:                            w = (lrx > (tilew - 1)) ? tilew - x : lrx + 1 - x;
307:                            h = (lry > (tileh - 1)) ? tileh - y : lry + 1 - y;
308:
309:                            i = (y + h - 1) * tilew + x + w - 1;
310:                            maxj = w;
311:                            wrap = tilew - maxj;
312:                            for (k = h; k > 0; k--) {
313:                                for (j = maxj; j > 0; j--, i--) {
314:                                    mask[i] = curScalVal;
315:                                }
316:                                i -= wrap;
317:                            }
318:                        } else { // Non-rectangular ROI. So far only circular case
319:                            cx = rois[r].x - tileulx;
320:                            cy = rois[r].y - tileuly;
321:                            rad = rois[r].r;
322:                            i = tileh * tilew - 1;
323:                            for (k = tileh - 1; k >= 0; k--) {
324:                                for (j = tilew - 1; j >= 0; j--, i--) {
325:                                    if (((j - cx) * (j - cx) + (k - cy)
326:                                            * (k - cy) < rad * rad)) {
327:                                        mask[i] = curScalVal;
328:                                        roiInTile = true;
329:                                    }
330:                                }
331:                            }
332:                        }
333:                    }
334:                }
335:
336:                // If wavelet transform is used
337:                if (sb.isNode) {
338:                    // Decompose the mask according to the subband tree
339:                    // Calculate size of padded line buffer
340:                    WaveletFilter vFilter = sb.getVerWFilter();
341:                    WaveletFilter hFilter = sb.getHorWFilter();
342:                    int lvsup = vFilter.getSynLowNegSupport()
343:                            + vFilter.getSynLowPosSupport();
344:                    int hvsup = vFilter.getSynHighNegSupport()
345:                            + vFilter.getSynHighPosSupport();
346:                    int lhsup = hFilter.getSynLowNegSupport()
347:                            + hFilter.getSynLowPosSupport();
348:                    int hhsup = hFilter.getSynHighNegSupport()
349:                            + hFilter.getSynHighPosSupport();
350:                    lvsup = (lvsup > hvsup) ? lvsup : hvsup;
351:                    lhsup = (lhsup > hhsup) ? lhsup : hhsup;
352:                    lvsup = (lvsup > lhsup) ? lvsup : lhsup;
353:                    paddedMaskLine = new int[lineLen + lvsup];
354:
355:                    if (roiInTile)
356:                        decomp(sb, tilew, tileh, c);
357:                }
358:            }
359:
360:            /**
361:             * This function decomposes the mask for a node in the subband tree.
362:             * after the mask is decomposed for a node, this function is called for
363:             * the children of the subband. The decomposition is done line by line
364:             * and column by column
365:             *
366:             * @param sb The subband that is to be used for the decomposition
367:             *
368:             * @param tilew The width of the current tile
369:             *
370:             * @param tileh The height of the current tile
371:             *
372:             * @param c component number
373:             */
374:            private void decomp(Subband sb, int tilew, int tileh, int c) {
375:                int ulx = sb.ulx;
376:                int uly = sb.uly;
377:                int w = sb.w;
378:                int h = sb.h;
379:                int scalVal, maxVal = 0;
380:                int i, j, k, s, hi, mi = 0, pin, li;
381:                int hmax, lmax, smax;
382:                int wrap, lineoffs, lastlow;
383:                int[] mask = roiMask[c]; // local copy
384:                int[] low = maskLineLow; // local copy
385:                int[] high = maskLineHigh; // local copy
386:                int[] padLine = paddedMaskLine; // local copy
387:                int highFirst = 0;
388:                int lastpin;
389:
390:                if (!sb.isNode)
391:                    return;
392:
393:                // HORIZONTAL DECOMPOSITION
394:
395:                // Calculate number of high and low samples after decomposition
396:                // and get support for low and high filters
397:                WaveletFilter filter = sb.getHorWFilter();
398:                int lnSup = filter.getSynLowNegSupport();
399:                int hnSup = filter.getSynHighNegSupport();
400:                int lpSup = filter.getSynLowPosSupport();
401:                int hpSup = filter.getSynHighPosSupport();
402:                int lsup = lnSup + lpSup + 1;
403:                int hsup = hnSup + hpSup + 1;
404:
405:                // Calculate number of high/low coeffis in subbands
406:                highFirst = sb.ulcx % 2;
407:                if (sb.w % 2 == 0) {
408:                    lmax = w / 2 - 1;
409:                    hmax = lmax;
410:                } else {
411:                    if (highFirst == 0) {
412:                        lmax = (w + 1) / 2 - 1;
413:                        hmax = w / 2 - 1;
414:                    } else {
415:                        hmax = (w + 1) / 2 - 1;
416:                        lmax = w / 2 - 1;
417:                    }
418:                }
419:
420:                int maxnSup = (lnSup > hnSup) ? lnSup : hnSup; // Maximum negative support
421:                int maxpSup = (lpSup > hpSup) ? lpSup : hpSup; // Maximum positive support
422:
423:                // Set padding to 0
424:                for (pin = maxnSup - 1; pin >= 0; pin--)
425:                    padLine[pin] = 0;
426:                for (pin = maxnSup + w - 1 + maxpSup; pin >= w; pin--)
427:                    padLine[pin] = 0;
428:
429:                // Do decomposition of all lines
430:                lineoffs = (uly + h) * tilew + ulx + w - 1;
431:                for (j = h - 1; j >= 0; j--) {
432:                    lineoffs -= tilew;
433:                    // Get the line to transform from the mask
434:                    mi = lineoffs;
435:                    for (k = w, pin = w - 1 + maxnSup; k > 0; k--, mi--, pin--) {
436:                        padLine[pin] = mask[mi];
437:                    }
438:
439:                    lastpin = maxnSup + highFirst + 2 * lmax + lpSup;
440:                    for (k = lmax; k >= 0; k--, lastpin -= 2) { // Low frequency samples
441:                        pin = lastpin;
442:                        for (s = lsup; s > 0; s--, pin--) {
443:                            scalVal = padLine[pin];
444:                            if (scalVal > maxVal)
445:                                maxVal = scalVal;
446:                        }
447:                        low[k] = maxVal;
448:                        maxVal = 0;
449:                    }
450:                    lastpin = maxnSup - highFirst + 2 * hmax + 1 + hpSup;
451:                    for (k = hmax; k >= 0; k--, lastpin -= 2) { // High frequency samples
452:                        pin = lastpin;
453:                        for (s = hsup; s > 0; s--, pin--) {
454:                            scalVal = padLine[pin];
455:                            if (scalVal > maxVal)
456:                                maxVal = scalVal;
457:                        }
458:                        high[k] = maxVal;
459:                        maxVal = 0;
460:                    }
461:                    // Put the lows and highs back
462:                    mi = lineoffs;
463:                    for (k = hmax; k >= 0; k--, mi--) {
464:                        mask[mi] = high[k];
465:                    }
466:                    for (k = lmax; k >= 0; k--, mi--) {
467:                        mask[mi] = low[k];
468:                    }
469:                }
470:
471:                // VERTICAL DECOMPOSITION
472:
473:                // Calculate number of high and low samples after decomposition
474:                // and get support for low and high filters
475:                filter = sb.getVerWFilter();
476:                lnSup = filter.getSynLowNegSupport();
477:                hnSup = filter.getSynHighNegSupport();
478:                lpSup = filter.getSynLowPosSupport();
479:                hpSup = filter.getSynHighPosSupport();
480:                lsup = lnSup + lpSup + 1;
481:                hsup = hnSup + hpSup + 1;
482:
483:                // Calculate number of high/low coeffs in subbands
484:                highFirst = sb.ulcy % 2;
485:                if (sb.h % 2 == 0) {
486:                    lmax = h / 2 - 1;
487:                    hmax = lmax;
488:                } else {
489:                    if (sb.ulcy % 2 == 0) {
490:                        lmax = (h + 1) / 2 - 1;
491:                        hmax = h / 2 - 1;
492:                    } else {
493:                        hmax = (h + 1) / 2 - 1;
494:                        lmax = h / 2 - 1;
495:                    }
496:                }
497:
498:                maxnSup = (lnSup > hnSup) ? lnSup : hnSup; // Maximum negative support
499:                maxpSup = (lpSup > hpSup) ? lpSup : hpSup; // Maximum positive support
500:
501:                // Set padding to 0
502:                for (pin = maxnSup - 1; pin >= 0; pin--)
503:                    padLine[pin] = 0;
504:                for (pin = maxnSup + h - 1 + maxpSup; pin >= h; pin--)
505:                    padLine[pin] = 0;
506:
507:                // Do decomposition of all columns
508:                lineoffs = (uly + h - 1) * tilew + ulx + w;
509:                for (j = w - 1; j >= 0; j--) {
510:                    lineoffs--;
511:                    // Get the line to transform from the mask
512:                    mi = lineoffs;
513:                    for (k = h, pin = k - 1 + maxnSup; k > 0; k--, mi -= tilew, pin--) {
514:                        padLine[pin] = mask[mi];
515:                    }
516:                    lastpin = maxnSup + highFirst + 2 * lmax + lpSup;
517:                    for (k = lmax; k >= 0; k--, lastpin -= 2) { // Low frequency samples
518:                        pin = lastpin;
519:                        for (s = lsup; s > 0; s--, pin--) {
520:                            scalVal = padLine[pin];
521:                            if (scalVal > maxVal)
522:                                maxVal = scalVal;
523:                        }
524:                        low[k] = maxVal;
525:                        maxVal = 0;
526:                    }
527:                    lastpin = maxnSup - highFirst + 2 * hmax + 1 + hpSup;
528:                    for (k = hmax; k >= 0; k--, lastpin -= 2) { // High frequency samples
529:                        pin = lastpin;
530:                        for (s = hsup; s > 0; s--, pin--) {
531:                            scalVal = padLine[pin];
532:                            if (scalVal > maxVal)
533:                                maxVal = scalVal;
534:                        }
535:                        high[k] = maxVal;
536:                        maxVal = 0;
537:                    }
538:                    // Put the lows and highs back
539:                    mi = lineoffs;
540:                    for (k = hmax; k >= 0; k--, mi -= tilew) {
541:                        mask[mi] = high[k];
542:                    }
543:                    for (k = lmax; k >= 0; k--, mi -= tilew) {
544:                        mask[mi] = low[k];
545:                    }
546:                }
547:
548:                if (sb.isNode) {
549:                    decomp(sb.getHH(), tilew, tileh, c);
550:                    decomp(sb.getLH(), tilew, tileh, c);
551:                    decomp(sb.getHL(), tilew, tileh, c);
552:                    decomp(sb.getLL(), tilew, tileh, c);
553:                }
554:
555:            }
556:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.